158
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A Computational Modeling of the Influence of Different Oxy-fuel Combustion Environment on Combustion Characteristics and Particles Temporal History

&
Pages 1073-1098 | Received 03 Sep 2019, Accepted 11 Oct 2019, Published online: 22 Oct 2019

References

  • Al-Abbas, A. H., J. Naser, and D. Dodds. 2012. CFD modelling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station. Fuel 102:646–65. doi:10.1016/j.fuel.2012.06.028.
  • Al-Abbas, A. H., J. Naser, D. Dodds, and A. Blicblau. 2013. Numerical modelling of oxy-fuel combustion in a full-scale tangentially fired pulverised coal boiler. Procedia. Eng. 56:375–80. doi:10.1016/j.proeng.2013.03.135.
  • Badzioch, S., and P. Hawksley. 1970. Kinetics of thermal decomposition of pulverized coal particles. Ind. Eng. Chem. Process Des. Dev. 9:521–30. doi:10.1021/i260036a005.
  • Chae, T., W. Yang, and C. Ryu. 2018. Investigation of flame characteristics using various design parameters in a pulverized coal burner for oxy ‐ fuel retrofitting. Int. J. Energy Res. 42:3206–17. doi:10.1002/er.4063.
  • Chen, L., and A. F. Ghoniem. 2012. Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES : A validation study. Energy Fuels 26:4783–98. doi:10.1021/ef3006993.
  • Chui, E. H., and G. D. Raithby. 1993. Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numer. Heat Transf. Part B 23:269–88. doi:10.1080/10407799308914901.
  • Clift, R., J. R. Grace, and M. E. Weber. 1978. Drops and particles. New York: Academic Press.
  • Gaikwad, P., H. Kulkarni, and S. Sreedhara. 2017. Simplified numerical modelling of oxy-fuel combustion of pulverized coal in a swirl burner. Appl. Therm. Eng. 124:734–45. doi:10.1016/j.applthermaleng.2017.06.069.
  • Guo, J., Z. Liu, X. Huang, T. Zhang, W. Luo, F. Hu, P. Li, and C. Zheng. 2017. Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler. Fuel 187:315–27. doi:10.1016/j.fuel.2016.09.070.
  • Hecht, E. S., C. R. Shaddix, M. Geier, A. Molina, and B. S. Haynes. 2012. Effect of CO2 and steam gasification reactions on the oxy-combustion of pulverized coal char. Combust. Flame 159:3437–47. doi:10.1016/j.combustflame.2012.06.009.
  • Hees, J., D. Zabrodiec, A. Massmeyer, M. Habermehl, and R. Kneer. 2016. Experimental investigation and comparison of pulverized coal combustion in CO2/O2- and N2/O2-atmospheres. Flow, Turbul. Combust. 96:417–31. doi:10.1007/s10494-015-9662-9.
  • Hees, J., D. Zabrodiec, A. Massmeyer, O. Hatzfeld, and R. Kneer. 2019. Experimental investigation into the influence of the oxygen concentration on a pulverized coal swirl flame in oxy-fuel atmosphere. Fuel 240:64–74. doi:10.1016/j.fuel.2018.11.111.
  • Hjärtstam, S., K. Andersson, F. Johnsson, and B. Leckner. 2009. Combustion characteristics of lignite-fired oxy-fuel flames. Fuel 88:2216–24. doi:10.1016/j.fuel.2009.05.011.
  • Kangwanpongpan, T., R. Corrêa Da Silva, and H. J. Krautz. 2012. Prediction of oxy-coal combustion through an optimized weighted sum of gray gases model. Energy 41:244–51. doi:10.1016/j.energy.2011.06.010.
  • Li, D., X. Liu, Y. Feng, C. Wang, Q. Lv, Q. Zha, J. Zhong, and D. Che. 2017a. Effects of oxidant distribution mode and burner configuration on oxy-fuel combustion characteristics in a 600 MWe utility boiler. Appl. Therm. Eng. 124:781–94. doi:10.1016/j.applthermaleng.2017.06.088.
  • Li, D., X. Liu, C. Wang, K. Xu, Q. Zha, Q. Lv, Y. Feng, J. Zhong, and D. Che. 2017b. Numerical study on combustion and heat transfer properties under oxy-fuel condition in a 600MW utility boiler. Energy Procedia. 105:4009–14. doi:10.1016/j.egypro.2017.03.844.
  • Mao, Z., L. Zhang, X. Zhu, C. Pan, B. Yi, and C. Zheng. 2016. Modeling of an oxy-coal flame under a steam-rich atmosphere. Appl. Energy 161:112–23. doi:10.1016/j.apenergy.2015.10.018.
  • Porter, R., F. Liu, M. Pourkashanian, A. Williams, and D. Smith. 2010. Journal of quantitative spectroscopy & radiative transfer evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments. J. Quant. Spectrosc. Radiat. Transf. 111:2084–94. doi:10.1016/j.jqsrt.2010.04.028.
  • Ranz, W. E., and W. R. Marshall. 1952. Evaporation from drops: Part 2. Chem. Eng. Prog. 48:173–80.
  • Rebola, A., and J. L. T. Azevedo. 2015. Modelling pulverized coal combustion using air and O2+ recirculated flue gas as oxidant. Appl. Therm. Eng. 83:1–7. doi:10.1016/j.applthermaleng.2015.03.008.
  • Sadiki, A., S. Agrebi, M. Chrigui, A. S. Doost, R. Knappstein, F. Di Mare, J. Janicka, A. Massmeyer, D. Zabrodiec, J. Hees, et al. 2017. Analyzing the effects of turbulence and multiphase treatments on oxy-coal combustion process predictions using LES and RANS. Chem. Eng. Sci. 166:283–302. doi:10.1016/j.ces.2017.03.015.
  • Smart, J. P., R. Patel, and G. S. Riley. 2010. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout. Combust. Flame 157:2230–40. doi:10.1016/j.combustflame.2010.07.013.
  • Toporov, D., P. Bocian, P. Heil, A. Kellermann, H. Stadler, S. Tschunko, M. Förster, and R. Kneer. 2008. Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combust. Flame 155:605–18. doi:10.1016/j.combustflame.2008.05.008.
  • Toporov, D. D. 2014. Combustion of pulverised coal in a mixture of oxygen and recycled flue gas. doi:10.1016/C2013-0-19301-4.
  • Warzecha, P., and A. Boguslawski. 2014. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies. Energy 66:732–43. doi:10.1016/j.energy.2013.12.015.
  • Yadav, S., and S. Mondal. 2019a. Numerical predictions on the influences of inlet temperature and pressure of feed gas on flow and combustion characteristics of oxy-pulverized coal combustion. Combust. Sci. Technol. 1–28. doi:10.1080/00102202.2019.1655405.
  • Yadav, S., and S. S. Mondal. 2019b. A complete review based on various aspects of pulverized coal combustion. Int. J. Energy Res. 43:3134–65. doi:10.1002/er.4395.
  • Zabrodiec, D., J. Hees, G. Möller, O. Hatzfeld, and R. Kneer. 2019. Pulverized coal swirl flames in oxy-fuel conditions: Effects of oxidizer O2 concentration on flow field and local gas composition. Proc. Combust. Inst. 37:4471–78. doi:10.1016/j.proci.2018.06.163.
  • Zhang, J., W. Prationo, L. Zhang, and Z. Zhang. 2013. Computational fluid dynamics modeling on the air-firing and oxy-fuel combustion of dried victorian brown coal. Energy Fuels 27:4258–69. doi:10.1021/ef400032t.
  • Zhou, Z., L. Chen, L. Guo, B. Qian, Z. Wang, and K. Cen. 2017. Computational modeling of oxy-coal combustion with intrinsic heterogeneous char reaction models. Fuel Process. Technol. 161:169–81. doi:10.1016/j.fuproc.2017.03.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.