232
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Combustion of Wet Coal Processing Waste and Coal Slime as Components of Fuel Slurries

ORCID Icon, &
Pages 1120-1139 | Received 19 Mar 2019, Accepted 22 Oct 2019, Published online: 31 Oct 2019

References

  • Armesto, L., Bahillo, A., Cabanillas, A., et al. 2003. Co-combustion of coal and olive oil industry residues in fluidised bed. Fuel 82:993–1000. doi:10.1016/S0016-2361(02)00397-6.
  • Burgess, A. R., and R. Ghaffari. 1989. Pre-ignition phenomena and their effects on overall combustion rates of coal slurry droplets. Symp. Int. Combust. 22:2009–17. doi:10.1016/S0082-0784(89)80216-4.
  • Cooper, P. B. 2013. The science and technology of coal and coal utilization. In The science and technology of coal and coal utilization, 666. Springer US, New York.
  • Dmitrienko, M. A., G. S. Nyashina, and P. A. Strizhak. 2017a. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals. J. Hazard. Mater. 338:148–59. doi:10.1016/j.jhazmat.2017.05.031.
  • Dmitrienko, M. A., P. A. Strizhak, and Y. S. Tsygankova. 2017b. Technoeconomic analysis of prospects of use of organic coal-water fuels of various component compositions. Chem. Pet. Eng. 53:195–202. doi:10.1007/s10556-017-0321-y.
  • Efstathiou, A. M., and G. G. Olympiou. 2017. Industrial NOx control via H2-SCR on a novel supported-Pt nanocatalyst. Chem. Eng. J. 170:424–32. doi:10.1016/j.cej.2011.01.001.
  • Feng, T., M. Huo, X. Zhao, T. Wang, X. Xia, and C. Ma. 2017. Reduction of SO2 to elemental sulfur with H2 and mixed H2/CO gas in an activated carbon bed. Chem. Eng. Res. Des. 121:191–99. doi:10.1016/j.cherd.2017.03.014.
  • Gao, J., X. Hao, L. Wang, and P. Wang. 2016. Resistance characteristics of coal slime in pipe flow at high pressure. Int. J. Chem. Reactor. Eng. 14:299–307. doi:10.1515/ijcre-2015-0076.
  • Global waste management outlook. 2015. UNEP, Nairobi, Kenya.
  • Glushkov, D. O., P. A. Strizhak, and M. Y. Chernetskii. 2016a. Organic coal-water fuel: Problems and advances (review). Therm. Eng. 63:707–17. doi:10.1134/S0040601516100037.
  • Glushkov, D. O., S. V. Syrodoy, A. V. Zhakharevich, and P. A. Strizhak. 2016b. Ignition of promising coal-water slurry containing petrochemicals: Analysis of key aspects. Fuel Process. Technol. 148:224–35. doi:10.1016/j.fuproc.2016.03.008.
  • Guttikunda, S. K., and P. Jawahar. 2014. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos. Environ. 92:449–60. doi:10.1016/j.atmosenv.2014.04.057.
  • Jerzak, W., Z. Kalicka, E. Kawecka-Cebula, and R. Straka. 2018. Retention of S with lignite using cedarnut shell in the co-combustion process performed in a fluidized bed combustor. Combust. Sci. Technol. 190 (4):707–20. doi:10.1080/00102202.2017.1406929.
  • Key world energy statistics. 2017. IEA: Paris. France.
  • Kumar, A., B. Sah, A. R. Singh, Y. Deng, X. He, P. Kumar, and R. C. Bansal. 2017. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable Sustainable Energy Rev. 69:596–609. doi:10.1016/j.rser.2016.11.191.
  • Kurgankina, M., G. Nyashina, and P. Strizhak. 2019. Advantages of switching coal-burning power plants to coal-water slurries containing petrochemicals. Appl. Therm. Eng. 147:998–1008. doi:10.1016/j.applthermaleng.2018.10.133.
  • Lee, B.-H., E. G. Eddings, and C. H. Jeon. 2015. Effect of coal blending methods with different excess oxygen on unburned carbon and NOx emissions in an entrained flow reactor. Energy Fuels 26:6803–14. doi:10.1021/ef300562t.
  • Lee, W., Liu, Y., Mwangi, F.K., et al. 2011. Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol-biodiesel-diesel blend of fuels. Energy 36:5591–99. doi:10.1016/j.energy.2011.07.012.
  • Liu, J., X. Jiang, L. Zhou, H. Wang, and X. Han. 2009. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler. J. Hazard. Mater. 167:817–23. doi:10.1016/j.jhazmat.2009.01.061.
  • Liu, W., J. Cai, C. Huang, Y. Hu, Q. Fu, Z. Zou, C. Sun, L. Shen, X. Wang, J. Pan, et al. 2016. Associations of gestational and early life exposures to ambient air pollution with childhood atopic eczema in Shanghai, China. Sci. Total Environ. 572:34–42. doi:10.1016/j.scitotenv.2016.07.197.
  • Mastral, A. M., M. S. Callén, and T. Garcia. 2000. Toxic organic emissions from coal combustion. Fuel Process. Technol. 67:1–10. doi:10.1016/S0378-3820(00)00088-6.
  • Njuguna Matheri, A., C. Mbohwa, F. Ntuli, M. Belaid, T. Seodigeng, J. Catherine Ngila, and C. Kinuthia-Njenga. 2018. Waste to energy bio-digester selection and design model for the organic fraction of municipal solid waste. Renewable Sustainable Energy Rev. 82:1113–21. doi:10.1016/j.rser.2017.09.051.
  • Osintsev, K. V. 2012. Studying flame combustion of coal-water slurries in the furnaces of power-generating boilers. Therm. Eng. 59:439–45. doi:10.1134/S0040601512060079.
  • Pei, J., Z. Zhang, and C. You. 2019. Optimizing the combustion of low-quality coal by the wall wind auxiliary combustion method in a tangentially fired utility boiler. Combust. Sci. Technol. 191 (3):570–89. doi:10.1080/00102202.2018.1505879.
  • Salomatov, V. V., G. V. Kuznetsov, S. V. Syrodoy, and N. Y. Gutareva. 2018. Conditions of the water–coal fuel drop dispersion at their ignition in the conditions of high-temperature heating. Combust. Sci. Technol. Article in Press. doi:10.1080/00102202.2018.1549038.
  • Shukla, S. C., S. Kukade, S. K. Mandal, and G. Kundu. 2008. Coal-oil-water multiphase fuel: Rheological behavior and prediction of optimum particle size. Fuel 87:3428–32. doi:10.1016/j.fuel.2008.05.027.
  • Skalska, K., J. S. Miller, and S. Ledakowicz. 2010. Trends in NOx abatement: A review. Sci. Total Environ. 408:3976–89. doi:10.1016/j.scitotenv.2010.06.001.
  • Taylan, O., D. Kaya, and A. Demirbas. 2016. An integrated multi attribute decision model for energy efficiency processes in petrochemical industry applying fuzzy set theory. Energy Convers. Manage. 117:501–12. doi:10.1016/j.enconman.2016.03.048.
  • Tsai, S. C. 1982. Fundamentals of coal beneficiation and utilization. In Fundamentals of coal beneficiation and utilization, 375. Elsevier Scientific Publishing Company, Amsterdam, Netherlands.
  • Vershinina, K. Y., N. E. Shlegel, and P. A. Strizhak. 2019. Impact of environmentally attractive additives on the ignition delay times of slurry fuels: Experimental study. Fuel 238:275–88. doi:10.1016/j.fuel.2018.10.132.
  • Wang, H., X. Jiang, M. Zhang, Y. Ma, H. Liu, and S. Wu. 2010. A new fluidization-suspension combustion technology for coal water slurry. Chem. Eng. Process. 49:1017–24. doi:10.1016/j.cep.2010.07.009.
  • Wang, H., S. Liu, X. Wang, Y. Shi, X. Qin, and C. Song. 2017. Ignition and combustion behaviors of coal slime in air. Energy Fuels 31:11439–47. doi:10.1021/acs.energyfuels.7b01960.
  • Wang, J., J. Liu, S. Wang, and J. Cheng. 2018. Slurrying property and mechanism of coal-coal gasification wastewater-slurry. Energy Fuels 32:4833–40. doi:10.1021/acs.energyfuels.8b00107.
  • Wang, R., Q. Ma, X. Ye, C. Li, and Z. Zhao. 2019b. Preparing coal slurry from coking wastewater to achieve resource utilization: Slurrying mechanism of coking wastewater–Coal slurry. Sci Total Environ. 650:1678–87. doi:10.1016/j.scitotenv.2018.09.329.
  • Wang, X., Lin, Q., Wang, C., et al. 2019a. The ignition characteristics and combustion processes of coal gangue under different hot coflow conditions in O2/CO2 atmosphere: In pellet form. Combust. Sci. Technol. 191 (3):419–34. doi:10.1080/00102202.2018.1493468.
  • Wei, Y., and J. Wang. 2016. Preparation of commercially applicable slurry fuels from rapid hydrogasification char by blending with coal. Fuel Process. Technol. 143:18–26. doi:10.1016/j.fuproc.2015.11.008.
  • Wu, J., B. Wang, and F. Cheng. 2017. Thermal and kinetic characteristics of combustion of coal sludge. J. Therm. Anal. Calor. 129:1899–909. doi:10.1007/s10973-017-6341-1.
  • Yang, Z., Y. Zhang, L. Liu, X. Wang, and Z. Zhang. 2016. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions. Waste Manage. 50:213–21. doi:10.1016/j.wasman.2015.11.011.
  • Zhang, S., Jiang, X., Lv, G., et al. 2019. Co-combustion of Shenmu coal and pickling sludge in a pilot scale drop-tube furnace: Pollutants emissions in flue gas and fly ash. Fuel Process. Technol. 184:57–64. doi:10.1016/j.fuproc.2018.11.009.
  • Zhao, X., W. Zhu, J. Huang, M. Li, and M. Gong. 2015. Emission characteristics of PCDD/Fs, PAHs and PCBs during the combustion of sludge-coal water slurry. J. Energy Inst. 88:105–11. doi:10.1016/j.joei.2014.07.005.
  • Zhao, Z., R. Wang, L. Ge, J. Wu, Q. Yin, and C. Wang. 2019. Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission. Energy 168 (609–618). doi: 10.1016/j.energy.2018.11.141.
  • Zhou, K., Q. Lin, H. Hu, H. Hu, and L. Song. 2017. The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere. Energy 136:173–84. doi:10.1016/j.energy.2016.02.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.