255
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Thermal Decomposition Model and Its Reaction Kinetic Parameters for Coal Smoldering with the Use of TG Tests in Oxygen-depleted Air

, , &
Pages 1154-1172 | Received 13 Aug 2019, Accepted 21 Oct 2019, Published online: 07 Nov 2019

References

  • Brune, J. F., and S. A. Saki. 2017. Prevention of gob ignitions and explosions in longwall mining using dynamic seals. Int. J. Min. Sci. Technol. 27:999–1003. doi:10.1016/j.ijmst.2017.06.026.
  • Carvalho, E. R., C. A. G. Veras, and J. A. CarvalhoJr. 2002. Experimental investigation of smoldering in biomass. Biomass Bioenergy 22:283–94. doi:10.1016/S0961-9534(02)00005-3.
  • Chatti, S., C. Ghabi, and A. Mhimid. 2019. Computational model of smoldering combustion in polyurethane foam. J. Appl. Fluid. Mech. 12:59–70.
  • Deng, J., Q. Li, Y. Xiao, and H. Wen. 2017. The effect of oxygen concentration on the non-isothermal combustion of coal. Thermochim. Acta 653:106–15. doi:10.1016/j.tca.2017.04.009.
  • Dodd, A. B., C. Lautenberger, and A. C. Fernandez-Pello. 2009. Numerical examination of two-dimensional smolder structure in polyurethane foam. Proc. Combust. Inst. 32:2497–504. doi:10.1016/j.proci.2008.06.196.
  • Fabris, I., D. Cormier, J. I. Gerhard, T. Bartczak, M. Kortschot, J. L. Torero, and Y. L. Cheng. 2017. Continuous, self-sustaining smoldering destruction of simulated feces. Fuel 190:58–66. doi:10.1016/j.fuel.2016.11.014.
  • Fan, T., G. Zhou, and J. Wang. 2018. Preparation and characterization of a wetting-agglomeration-based hybrid coal dust suppressant. Process. Saf. Environ. 113:282–91. doi:10.1016/j.psep.2017.10.023.
  • Hadden, R. M. 2011. Smoldering and self-sustaining reactions in solids: An experimental approach. Edinburgh: University of Edinburgh.
  • Hadden, R. M., G. Rein, and C. M. Belcher. 2013. Study of the competing chemical reactions in the initiation and spread of smoldering combustion in peat. P. Combust. Inst. 34:2547–53. doi:10.1016/j.proci.2012.05.060.
  • Huang, X. Y., and G. Rein. 2014. Smoldering combustion of peat in wildfires: Inverse modeling of the drying and the thermal and oxidative decomposition kinetics. Combust. Flame 161:1633–44. doi:10.1016/j.combustflame.2013.12.013.
  • Huang, X. Y., and G. Rein. 2015. Computational study of critical moisture and depth of burn in peat fires. Int. J. Wildland Fire 24:798–808. doi:10.1071/WF14178.
  • Kim, C. J. 2016. Effects of wind barrier design and closed coal storage on spontaneous ignition of coal stockpiles. J. Loss. Prevent. Proc. 40:529–36. doi:10.1016/j.jlp.2016.02.009.
  • Li, K. Y., D. S. W. Pau, Y. N. Hou, and J. Ji. 2014b. Modeling pyrolysis of charring materials: Determining kinetic properties and heat of pyrolysis of medium density fibreboard. Ind. Eng. Chem. Res. 53:141–49. doi:10.1021/ie402905z.
  • Li, K. Y., X. Huang, C. Fleischmann, G. Rein, and J. Ji. 2014a. Pyrolysis of medium-density fibreboard: Optimized search for kinetics scheme and parameters via a Genetic Algorithm Driven by Kissinger’s Method. Energy Fuels 28:6130–39. doi:10.1021/ef501380c.
  • Li, Z. X., Y. Liu, J. Jia, B. Wu, and H. Li. 2017. Precision improvement of coal oxidation experiment and experimental method of closed oxygen consumption. J. China U. Min. Techno. 46:273–78.
  • Lu, W., Y. J. Cao, Z. A. Huang, J. C. Tien, and B. Qin. 2017. Study on adiabatic oxidation characters of coal with applying constant temperature difference to guide coal’s oxidation with temperature rising. Energy Fuels 31:882–90. doi:10.1021/acs.energyfuels.6b02247.
  • Mulky, T. C., and K. E. Niemeyer. 2019. Computational study of the effects of density, fuel content, and moisture content on smoldering propagation of cellulose and hemicellulose mixtures. P. Combust. Inst. 37:4091–98. doi:10.1016/j.proci.2018.06.164.
  • Nazare, S., W. M. Pitts, S. Matko, and R. D. Davis. 2014. Evaluating smoldering behavior of fire-blocking barrier fabrics. J. Fire. Sci. 32:539–62. doi:10.1177/0734904114543450.
  • Ohlemiller, T. J. 1985. Modeling of smoldering combustion propagation. Prog. Energy Combust. Sci. 11:277–310. doi:10.1016/0360-1285(85)90004-8.
  • Palamba, P., M. L. Ramadhan, and F. A. Imran. 2017. Investigation of smoldering combustion propagation of dried peat. 1st International tropical renewable energy conference, Bogor Indonesia, Oct 26–28.
  • Qi, G. S., D. Wang, K. Zheng, J. Xu, X. Qi, and X. Zhong. 2015. Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air. J. Loss. Prev. Proc. 35:224–31. doi:10.1016/j.jlp.2015.05.011.
  • Qi, G. S., D. Wang, K. Zheng, Y. Tang, and X. Lu. 2016. Smoldering combustion of coal under forced air flow: Experimental investigation. J. Fire. Sci. 34:1–22. doi:10.1177/0734904116643331.
  • Rein, G. 2005. Computational model of forward and opposed smoldering combustion with improved chemical kinetics. Berkeley: University of California.
  • Ronda, A., M. Della Zassa, A. Biasin, M. A. Martin-Lara, and P. Canu. 2017. Experimental investigation on the smoldering of pine bark. Fuel 193:81–94. doi:10.1016/j.fuel.2016.12.028.
  • Song, Z., H. Fan, J. Jiang, and C. Li. 2017. Insight into effects of pore diffusion on smoldering kinetics of coal using a 4-step chemical reaction model. J. Loss. Prevent. Proc. 48:312–19. doi:10.1016/j.jlp.2017.04.020.
  • Stoliarov, S. I., O. Zeller, and A. B. Morgan. 2018. An experimental setup for observation of smoldering-to-flaming transition on flexible foam/fabric assemblies. Fire Mater. 42:128–33. doi:10.1002/fam.2464.
  • Su, H. T., F. Zhou, J. Li, and H. Qi. 2017. Effects of oxygen supply on low-temperature oxidation of coal: A case study of Jurassic coal in Yima, China. Fuel 202:446–54. doi:10.1016/j.fuel.2017.04.055.
  • Suchul, Y., J. Dukwoo, and N. Lee. 2019. Management and mechanisms of spontaneous ignition in waste pile (I). J. Korea. Soc. Waste Manage. 36:401–12. doi:10.9786/kswm.2019.36.4.401.
  • Tang, Y., and H. Wang. 2019. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite. Process. Saf. Environ. 124:143–50. doi:10.1016/j.psep.2019.01.031.
  • Veronica, S., R. H. Putri, and F. Fitriani. 2017. Effect of density on forward and upward smoldering combustion of cellulosic material. 1st International Tropical Renewable Energy Conference (i-TREC), Bogor Indonesia, Oct 26–28.
  • Walther, D. C., R. A. Anthenien, and A. C. Fernandez-Pello. 2000. Smolder ignition of polyurethane foam: Effect of oxygen concentration. Fire Saf. J. 34:343–59. doi:10.1016/S0379-7112(00)00007-2.
  • Wang, D. M., H. Xin, X. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2016a. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, H., E. Van, J. Philip, P. R. Medwell, Z. F. Tian, and M. Possell. 2016b. Identification and quantitative analysis of smoldering and flaming combustion of radiata pine. Energy Fuel 30:7666–77. doi:10.1021/acs.energyfuels.6b00314.
  • Wang, H., E. Van, J. Philip, P. R. Medwell, Z. F. Tian, and M. Possell. 2017. Effects of oxygen concentration on radiation-aided and self-sustained smoldering combustion of radiata pine. Energy Fuel 31:8619–30. doi:10.1021/acs.energyfuels.7b00646.
  • Xie, K. C. 2002. Coal structure and its reactivity. Beijing: Science Press.
  • Yang, J., N. Liu, and H. Chen. 2019. Effects of atmospheric oxygen on horizontal peat smoldering fires: Experimental and numerical study. P. Combust. Inst. 37:4063–71. doi:10.1016/j.proci.2018.06.218.
  • Yashwanth, B. L., B. Shotorban, and S. Mahalingam. 2015. A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element. Combust. Flame 163 (3):301–16. doi:10.1016/j.combustflame.2015.10.006.
  • Yermán, L., R. M. Hadden, J. Carrascal, I. Fabris, D. Cormier, J. L. Torero, J. I. Gerhard, M. Krajcovic, P. Pironi, Y.-L. Cheng, et al. 2015. Smoldering combustion as a treatment technology for feces: Exploring the parameter space. Fuel 147:108–16. doi:10.1016/j.fuel.2015.01.055.
  • Zhou, B., S. Yang, C. Wang, J. Cai, Q. Xu, and N. Sang. 2019. Experimental study on the influence of coal oxidation on coal and gas outburst during invasion of magmatic rocks into coal seams. Process. Saf. Environ. 124:213–22. doi:10.1016/j.psep.2019.02.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.