521
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Experimental and Numerical Study of a Methane-Fueled Pre-chamber System in Rapid Compression Machine

, , &
Pages 1463-1494 | Received 09 Jun 2019, Accepted 27 Nov 2019, Published online: 06 Dec 2019

References

  • Akansu, S. O., Z. Dulger, N. Kahraman, and T. N. Veziroǧlu. 2004. Internal combustion engines fueled by natural gas—Hydrogen mixtures. Int J Hydrogen Energy 29 (14):1527–39. doi:10.1016/j.ijhydene.2004.01.018.
  • Allison, P. M., M. de Oliveira, A. Giusti, and E. Mastorakos. 2018. Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel 230:274–81. doi:10.1016/j.fuel.2018.05.005.
  • Atibeh, P. A., M. J. Brear, P. A. Dennis, P. J. Orbaiz, and H. C. Watson. 2013. Lean limit combustion analysis for a spark ignition natural gas internal combustion engine. Combust. Sci. Technol. 185 (8):1151–68. doi:10.1080/00102202.2013.769785.
  • Attard, W. P., and H. Blaxill. 2011. A single fuel pre-chamber jet ignition powertrain achieving high load, high efficiency and near zero NOx emissions. SAE Int. J. Engines 5 (3):734–46. doi:10.4271/2011-01-2023.
  • Attard, W. P., and H. Blaxill. 2012. A gasoline fueled pre-chamber jet ignition combustion system at unthrottled conditions. SAE Int. J. Engines 5 (2):315–29. doi:10.4271/2012-01-0386.
  • Attard, W. P., N. Fraser, P. Parsons, and E. Toulson. 2010. A turbulent jet ignition Pre-chamber combustion system for large fuel economy improvements in a modern vehicle powertrain. SAE Int. J. Engines 3 (2):20–37. doi:10.4271/2010-01-1457.
  • Attard, W. P., J. Kohn, and P. Parsons. 2010. Ignition energy development for a spark initiated combustion system capable of high load, high efficiency and near zero NOx emissions. SAE Int. J. Engines 3 (2):481–96. doi:10.4271/2010-32-0088.
  • Bartolucci, L., S. Cordiner, V. Mulone, and V. Rocco. 2016. Natural gas stable combustion under Ultra-lean operating conditions in internal combustion engines. Energy Procedia 101:886–92. doi:10.1016/j.egypro.2016.11.112.
  • Bhandari, K., A. Bansal, A. Shukla, and M. Khare. 2005. Performance and emissions of natural gas fueled internal combustion engine: A review. J. Sci. Ind. Res. 64 (5):333–38.
  • Biswas, S., and L. Qiao. 2018. Ignition of ultra-lean premixed H2/air using multiple hot turbulent jets generated by pre-chamber combustion. Appl. Therm. Eng. 132:102–14. doi:10.1016/j.applthermaleng.2017.11.073.
  • Biswas, S., S. Tanvir, H. Wang, and L. Qiao. 2016. On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 106:925–37. doi:10.1016/j.applthermaleng.2016.06.070.
  • BOOST version 4.0. 2003. AVL list GmbH graz. Austria.
  • Burke, U., K. P. Somers, P. O’Toole, C. M. Zinner, N. Marquet, G. Bourque, E. L. Petersen, W. K. Metcalfe, Z. Serinyel, H. J. Curran, et al. 2015. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combust. Flame 162 (2):315–30. doi:10.1016/j.combustflame.2014.08.014.
  • CHEMKIN release 10131. 2013. Reaction design. San Diego.
  • Cho, H. M., and B. Q. He. 2007. Spark ignition natural gas engines - A review. Energy Convers. Manage. 48 (2):608–18. doi:10.1016/j.enconman.2006.05.023.
  • Di, H., X. He, P. Zhang, Z. Wang, M. S. Wooldridge, C. K. Law, C. Wang, S. Shuai, J. Wang. 2014. Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane. Combust. Flame 161 (10):2531–38. doi:10.1016/j.combustflame.2014.04.014.
  • Dimopoulos, P., C. Bach, P. Soltic, and K. Boulouchos. 2008. Hydrogen–Natural gas blends fuelling passenger car engines: Combustion, emissions and well-to-wheels assessment. Int J Hydrogen Energy 33 (23):7224–36. doi:10.1016/j.ijhydene.2008.07.012.
  • Donohoe, N., A. Heufer, W. K. Metcalfe, H. J. Curran, M. L. Davis, O. Mathieu, D. Plichta, A. Morones, E. L. Petersen, F. Güthe, et al. 2014. Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures. Combust. Flame 161 (6):1432–43. doi:10.1016/j.combustflame.2013.12.005.
  • Einewall, P., P. Tunestål, and B. Johansson. 2005. Lean burn natural gas operation vs. stoichiometric operation with EGR and a three way catalyst. SAE International. DOI: 10.4271/2005-01-0250.
  • Gentz, G., M. Gholamisheeri, and E. Toulson. 2017. A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization. Appl. Energy 189:385–94. doi:10.1016/j.apenergy.2016.12.055.
  • Gentz, G., B. Thelen, M. Gholarnisheeri, P. Litke, A. Brown, J. Hoke, E. Toulson. 2015. A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine. Appl. Therm. Eng. 81:399–411. doi:10.1016/j.applthermaleng.2015.02.026.
  • Gentz, G. R., and E. Toulson. 2016. Experimental studies of a liquid propane auxiliary fueled turbulent jet igniter in a rapid compression machine. SAE Int. J. Engines 9 (2):777–85. doi:10.4271/2016-01-0708.
  • Gersen, S., H. Darmeveil, and H. Levinsky. 2012. The effects of CO addition on the autoignition of H2, CH4 and CH4/H2 fuels at high pressure in an RCM. Combust. Flame 159 (12):3472–75. doi:10.1016/j.combustflame.2012.06.021.
  • Gharehghani, A., M. Koochak, M. Mirsalim, and T. Yusaf. 2013. Experimental investigation of thermal balance of a turbocharged SI engine operating on natural gas. Appl. Therm. Eng. 60 (1–2):200–07. doi:10.1016/j.applthermaleng.2013.06.029.
  • Gholamisheeri, M., S. Givler, and E. Toulson. 2019. Large eddy simulation of a homogeneously charged turbulent jet ignition system. Int. J. Engine Res. 20 (2):181–93. doi:10.1177/1468087417742834.
  • Gholamisheeri, M., B. Thelen, E. Toulson, and C. F. D. Modeling. 2017. Experimental analysis of a homogeneously charged turbulent jet ignition system in a rapid compression machine. SAE Int. doi:10.4271/2017-01-0557.
  • Gholamisheeri, M., B. C. Thelen, G. R. Gentz, I. S. Wichman, and E. Toulson. 2016. Rapid compression machine study of a premixed, variable inlet density and flow rate, confined turbulent jet. Combust. Flame 169:321–32. doi:10.1016/j.combustflame.2016.05.001.
  • Gholamisheeri, M., I. S. Wichman, and E. Toulson. 2017. A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame 183:194–206. doi:10.1016/j.combustflame.2017.05.008.
  • Goy, C. J., A. J. Moran, and G. O. Thomas, editors. Autoignition characteristics of gaseous fuels at representative gas turbine conditions. ASME Turbo Expo 2001: Power for Land, Sea, and Air, New Orleans, Louisiana; 2001. V002T02A018.
  • Gri mech. 2016. Accessed October. http://combustion.berkeley.edu/gri-mech/.
  • Guerry, E. S., M. S. Raihan, K. K. Srinivasan, S. R. Krishnan, and A. Sohail. 2016. Injection timing effects on partially premixed diesel–Methane dual fuel low temperature combustion. Appl. Energy 162:99–113. doi:10.1016/j.apenergy.2015.10.085.
  • Gussak, L., V. Karpov, V. Slutskii, and A. Spasskii. 1983. Burning rate and stability in forechamber flame ignition in an internal-combustion engine. Combust. Explos. Shock Waves 19 (5):628–30. doi:10.1007/BF00750441.
  • Heyne, S., M. Meier, B. Imbert, and D. Favrat. 2009. Experimental investigation of prechamber autoignition in a natural gas engine for cogeneration. Fuel 88 (3):547–52. doi:10.1016/j.fuel.2008.09.032.
  • Hiremath, S. S., S. V. Khandal, N. R. Banapurmath, V. B. Math, and V. N. Gaitonde. 2017. Comparative analysis of performance of dual fuel (DF) and homogeneous charge compression ignition (HCCI) engines fuelled with honne oil methyl ester (HOME) and compressed natural gas (CNG). Fuel 196:134–43. doi:10.1016/j.fuel.2017.01.089.
  • Hu, E., X. Li, X. Meng, Y. Chen, Y. Cheng, Y. Xie, Z. Huang. 2015. Laminar flame speeds and ignition delay times of methane–Air mixtures at elevated temperatures and pressures. Fuel 158:1–10. doi:10.1016/j.fuel.2015.05.010.
  • Huang, J., W. K. Bushe, P. G. Hill, and S. R. Munshi. 2006. Experimental and kinetic study of shock initiated ignition in homogeneous methane–Hydrogen–Air mixtures at engine-relevant conditions. Int. J. Chem. Kinet. 38 (4):221–33. doi:10.1002/kin.20157.
  • Ibrahim, A., and S. Bari. 2008. Optimization of a natural gas SI engine employing EGR strategy using a two-zone combustion model. Fuel 87 (10):1824–34. doi:10.1016/j.fuel.2007.10.004.
  • Ibrahim, A., and S. Bari. 2010. An experimental investigation on the use of EGR in a supercharged natural gas SI engine. Fuel 89 (7):1721–30. doi:10.1016/j.fuel.2009.07.005.
  • Iida, N., O. Kawaguchi, and G. T. Sato. 1985a. Premixed flame propagating into a narrow channel at a high speed, part 1: Flame behaviors in the channel. Combust. Flame 60 (3):245–55. doi:10.1016/0010-2180(85)90030-6.
  • Iida, N., O. Kawaguchi, and G. T. Sato. 1985b. Premixed flame propagating into a narrow channel at a high speed, part 2: Transient behavior of the properties of the flowing gas inside the channel. Combust. Flame 60 (3):257–67. doi:10.1016/0010-2180(85)90031-8.
  • Korakianitis, T., A. M. Namasivayam, and R. J. Crookes. 2011. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog. Energy Combust. Sci. 37 (1):89–112. doi:10.1016/j.pecs.2010.04.002.
  • Li, Y., C.-W. Zhou, K. P. Somers, K. Zhang, and H. J. Curran. 2017. The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst. 36 (1):403–11. doi:10.1016/j.proci.2016.05.052.
  • Liu, C., H. Song, P. Zhang, Z. Wang, M. S. Wooldridge, X. He, G. Suo. 2018. A rapid compression machine study of autoignition, spark-ignition and flame propagation characteristics of H2/CH4/CO/air mixtures. Combust. Flame 188:150–61. doi:10.1016/j.combustflame.2017.09.031.
  • Liu, J., F. Yang, H. Wang, M. Ouyang, and S. Hao. 2013. Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing. Appl. Energy 110:201–06. doi:10.1016/j.apenergy.2013.03.024.
  • Maxson, J. A., D. M. Hensinger, K. Hom, and A. K. Oppenheim. 1991. Performance of multiple stream pulsed jet combustion systems. SAE International. DOI: 10.4271/910565.
  • Nieman, D. E., A. B. Dempsey, and R. D. Reitz. 2012. Heavy-duty RCCI operation using natural gas and diesel. SAE International. doi:10.1094/PDIS-11-11-0999
  • Olsen, D. B., J. L. Adair, and B. D. Willson. 2005. Precombustion chamber design and performance studies for a large bore natural gas engine. ASME 2005 Internal Combustion Engine Division Spring Technical Conference (41847):415–28. doi:10.1115/ICES2005-1057.
  • Petersen, E. L., D. M. Kalitan, S. Simmons, G. Bourque, H. J. Curran, and J. M. Simmie. 2007. Methane/propane oxidation at high pressures: Experimental and detailed chemical kinetic modeling. Proc. Combust. Inst. 31 (1):447–54. doi:10.1016/j.proci.2006.08.034.
  • Qin, F., A. Shah, Z.-W. Huang, L.-N. Peng, P. Tunestal, and X.-S. Bai. 2018. Detailed numerical simulation of transient mixing and combustion of premixed methane/air mixtures in a pre-chamber/main-chamber system relevant to internal combustion engines. Combust. Flame 188:357–66. doi:10.1016/j.combustflame.2017.10.006.
  • Ricardo, H. R. 1922. Recent research work on the internal-combustion engine. SAE International. DOI: 10.4271/220001.
  • Richards, K., P. Senecal, and E. Pomraning. 2018. Converge (version 2.4). Middleton, WI: Converge Science Inc.
  • Robinet, C., P. Higelin, B. Moreau, O. Pajot, and J. Andrzejewski. 1999. A new firing concept for internal combustion engines: “I’APIR”. SAE International. DOI: 10.4271/1999-01-0621.
  • Rousseau, S., B. Lemoult, and M. Tazerout. 1999. Combustion characterization of natural gas in a lean burn spark-ignition engine. Proc Inst Mech Eng Part D 213 (5):481–89. doi:10.1243/0954407991527044.
  • Semin, R. A. B. 2008. A technical review of compressed natural gas as an alternative fuel for internal combustion engines. Am. J. Eng. Appl. Sci. 1 (4):302–11. doi:10.3844/ajeassp.2008.302.311.
  • Sen, A. K., J. J. Zheng, and Z. H. Huang. 2011. Dynamics of cycle-to-cycle variations in a natural gas direct-injection spark-ignition engine. Appl. Energy 88 (7):2324–34. doi:10.1016/j.apenergy.2011.01.009.
  • Senecal, P. K., E. Pomraning, K. J. Richards, T. E. Briggs, C. Y. Choi, R. M. McDavid, and M. A. Patterson. 2003. Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry. SAE International. DOI: 10.4271/2003-01-1043.
  • Shah, A., P. Tunestal, and B. Johansson. 2012. Investigation of performance and emission characteristics of a heavy duty natural gas engine operated with pre-chamber spark plug and dilution with excess air and EGR. SAE Int. J. Engines 5 (4):1790–801. doi:10.4271/2012-01-1980.
  • Shah, A., P. Tunestal, and B. Johansson. 2014. Effect of relative mixture strength on performance of divided chamber ‘avalanche activated combustion’ ignition technique in a heavy duty natural gas engine. SAE International. DOI: 10.4271/2014-01-1327.
  • Sidey, J. A. M., and E. Mastorakos. 2018. Pre-chamber ignition mechanism: simulations of transient autoignition in a mixing layer between reactants and partially-burnt species. Flow Turbul. Combust. 101 (4):1093–102. doi:10.1007/s10494-018-9960-0.
  • Song, H., C. Liu, F. Li, Z. Wang, X. He, S. Shuai, J. Wang. 2017. A comparative study of using diesel and PODEn as pilot fuels for natural gas dual-fuel combustion. Fuel 188:418–26. doi:10.1016/j.fuel.2016.10.051.
  • Takashima, Y., H. Tanaka, T. Sako, and M. Furutani. 2014. Evaluation of engine performance and combustion in natural gas engine with Pre-chamber plug under lean burn conditions. SAE Int. J. Engines 8 (1):221–29. doi:10.4271/2014-32-0103.
  • Thelen, B. C., G. Gentz, and E. Toulson. 2015. Computational study of a turbulent jet ignition system for lean burn operation in a rapid compression machine. SAE International. DOI: 10.4271/2015-01-0396.
  • Thelen, B. C., and E. Toulson. 2016. A computational study of the effects of spark location on the performance of a turbulent jet ignition system. SAE International. DOI: 10.4271/2016-01-0608.
  • Tong, L., H. Wang, Z. Zheng, R. Reitz, and M. Yao. 2016. Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel 181:878–86. doi:10.1016/j.fuel.2016.05.037.
  • Toulson, E., A. Huisjen, X. Chen, C. Squibb, G. Zhu, H. Schock, W. P. Attard. 2012. Visualization of propane and natural gas spark ignition and turbulent jet ignition combustion. SAE Int. J. Engines 5 (4):1821–35. doi:10.4271/2012-32-0002.
  • Toulson, E., H. J. Schock, and W. P. Attard. 2010. A review of Pre-chamber initiated jet ignition combustion systems. SAE International. DOI: 10.4271/2010-01-2263.
  • Turkish, M. C. 1974. 3 - valve stratified charge engines: Evolvement, analysis and progression. SAE International. DOI: 10.4271/741163.
  • Validi, A., H. Schock, and F. Jaberi. 2017. Turbulent jet ignition assisted combustion in a rapid compression machine. Combust. Flame 186:65–82. doi:10.1016/j.combustflame.2017.07.032.
  • Wang, N., J. Liu, W. L. Chang, and C.-F. Lee. 2018. A numerical study on effects of pre-chamber syngas reactivity on hot jet ignition. Fuel 234:1–8. doi:10.1016/j.fuel.2018.06.124.
  • Wang, Y., Y. Li, Z. Wang, and X. He. 2017. Hydrogen formation from methane rich combustion under high pressure and high temperature conditions. Int J Hydrogen Energy 42 (20):14301–11. doi:10.1016/j.ijhydene.2017.04.022.
  • Yakhot, V., and S. A. Orszag. 1986. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1 (1):3–51. doi:10.1007/bf01061452.
  • Yang, B., C. Xi, X. Wei, K. Zeng, and M.-C. Lai. 2015. Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load. Appl. Energy 143:130–37. doi:10.1016/j.apenergy.2015.01.037.
  • Yousefi, A., H. Guo, and M. Birouk. 2018. An experimental and numerical study on diesel injection split of a natural gas/diesel dual-fuel engine at a low engine load. Fuel 212 (SupplementC):332–46. doi:10.1016/j.fuel.2017.10.053.
  • Zhang, Q., Z. S. Xu, M. H. Li, and S. D. Shao. 2016. Combustion and emissions of a Euro VI heavy-duty natural gas engine using EGR and TWC. J. Nat. Gas Sci. Eng. 28:660–71. doi:10.1016/j.jngse.2015.12.015.
  • Zheng, Q. P., H. M. Zhang, and D. F. Zhang. 2005. A computational study of combustion in compression ignition natural gas engine with separated chamber. Fuel 84 (12):1515–23. doi:10.1016/j.fuel.2005.02.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.