403
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation on the Route to Vortex-acoustic Lock-In Phenomenon in Bluff Body Stabilized Combustors

ORCID Icon & ORCID Icon
Pages 1538-1566 | Received 11 Dec 2018, Accepted 02 Dec 2019, Published online: 09 Dec 2019

References

  • Balachandran, R., B. O. Ayoola, C. F. Kaminski, A. P. Dowling, and E. Mastorakos. 2005. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143 (1–2):37–55. doi:10.1016/j.combustflame.2005.04.009.
  • Barbi, C., D. P. Favier, C. A. Maresca, and D. P. Telionis. 1986. Vortex shedding and lock-on of a circular cylinder in oscillatory flow. J. Fluid Mech. 170:527–44. doi:10.1017/S0022112086001003.
  • Berger, E., D. Scholz, and M. Schumm. 1990. Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations. J. Fluids Struct. 4 (3):231–57. doi:10.1016/S0889-9746(05)80014-3.
  • Bloxsidge, G. J., A. P. Dowling, and P. J. Langhorne. 1988. Reheat buzz: An acoustically coupled combustion instability. part 2. theory. J. Fluid Mech. 193:445–73. doi:10.1017/S0022112088002216.
  • Braza, M., P. H. H. M. Chassaing, and H. H. Minh. 1986. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165:79–130. doi:10.1017/S0022112086003014.
  • Candel, S. M. 1992 Combustion instabilities coupled by pressure waves and their active control. Symposium (International) on Combustion, vol. 24, pp. 1277–96. Sydney, Australia: Elsevier.
  • Chakravarthy, S. R., O. J. Shreenivasan, B. Boehm, A. Dreizler, and J. Janicka. 2007b. Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor. J. Acoust. Soc. Am. 122 (1):120–27. doi:10.1121/1.2741374.
  • Chakravarthy, S. R., R. Sivakumar, and O. J. Shreenivasan. 2007a. Vortex-acoustic lock-on in bluff-body and backward-facing step combustors. Sadhana 32 (1–2):145–54. doi:10.1007/s12046-007-0013-y.
  • Chen, L. S., S. Bomberg, and W. Polifke. 2016. Propagation and generation of acoustic and entropy waves across a moving flame front. Combust. Flame 166:170–80. doi:10.1016/j.combustflame.2016.01.015.
  • Emerson, B., and T. Lieuwen. 2015. Dynamics of harmonically excited, reacting bluff body wakes near the global hydrodynamic stability boundary. J. Fluid Mech. 779:716–50. doi:10.1017/jfm.2015.450.
  • Emerson, B., K. Murphy, and T. Lieuwen. 2013. Flame density ratio effects on vortex dynamics of harmonically excited bluff body stabilized flames. ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, V01AT04A014. Texas, USA: American Society of Mechanical Engineers.
  • Emerson, B., J. O’Connor, D. Noble, and T. Lieuwen. 2012. Frequency locking and vortex dynamics of an acoustically excited bluff body stabilized flame. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 451.
  • Erickson, R. R., M. C. Soteriou, and P. G. Mehta. 2006. The influence of temperature ratio on the dynamics of bluff body stabilized flames. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January, 9–12.
  • Fureby, C. 2000. A computational study of combustion instabilities due to vortex shedding. Proc. Combust. Inst. 28 (1):783–91. doi:10.1016/S0082-0784(00)80281-7.
  • Gabbai, R. D., and H. Benaroya. 2005. An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282 (3–5):575–616. doi:10.1016/j.jsv.2004.04.017.
  • Giauque, A., T. Poinsot, M. J. Brear, and F. Nicoud. 2006. Budget of disturbance energy in gaseous reacting flows. Proc. Summer Program 2006, Center for Turbulence Research, Stanford, California: Stanford University.
  • Granger, C. W. J. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–38. doi:10.2307/1912791.
  • Hegde, U. G., D. Reuter, B. R. Daniel, and B. T. Zinn. 1987. Flame driving of longitudinal instabilities in dump type ramjet combustors. Combust. Sci. Technol. 55 (4–6):125–38. doi:10.1080/00102208708947075.
  • Hertzberg, J. R., I. G. Shepherd, and L. Talbot. 1991. Vortex shedding behind rod stabilized flames. Combust. Flame 86 (1–2):1–11. doi:10.1016/0010-2180(91)90051-C.
  • Huang, Y., and V. Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energ. Combust. Sci. 35 (4):293–364. doi:10.1016/j.pecs.2009.01.002.
  • Karimi, N., M. J. Brear, and W. H. Moase. 2008. Acoustic and disturbance energy analysis of a flow with heat communication. J. Fluid Mech. 597:67–89. doi:10.1017/S0022112007009573.
  • Ken, H. Y., A. Trouvé, and J. W. Daily. 1991. Low-frequency pressure oscillations in a model ramjet combustor. J. Fluid Mech. 232:47–72. doi:10.1017/S0022112091003622.
  • Kiya, M., H. Ishikawa, and H. Sakamoto. 2001. Near-wake instabilities and vortex structures of three-dimensional bluff bodies: A review. J. Wind Eng. Ind. Aerod. 89 (14–15):1219–32. doi:10.1016/S0167-6105(01)00160-X.
  • Konstantinidis, E., and S. Balabani. 2007. Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations. J. Fluids Struct. 23 (7):1047–63. doi:10.1016/j.jfluidstructs.2007.03.002.
  • Konstantinidis, E., S. Balabani, and M. Yianneskis. 2003. The effect of flow perturbations on the near wake characteristics of a circular cylinder. J. Fluids Struct. 18 (3–4):367–86. doi:10.1016/j.jfluidstructs.2003.07.006.
  • Konstantinidis, E., S. Balabani, and M. Yianneskis. 2005. The timing of vortex shedding in a cylinder wake imposed by periodic inflow perturbations. J. Fluid Mech. 543:45–55. doi:10.1017/S0022112005006786.
  • Lang, W., and D. Vortmeyer. 1987. Cross-correlation of sound pressure and heat release rate for oscillating flames with several frequencies excited. Combust. Sci. Technol. 54 (1–6):399–406. doi:10.1080/00102208708947063.
  • Langhorne, P. J. 1988. Reheat buzz: An acoustically coupled combustion instability. part 1. experiment. J. Fluid Mech. 193:417–43. doi:10.1017/S0022112088002204.
  • Lee, C. Y., L. Li, K. Bong, M. P. Juniper, and R. S. Cant. 2016. Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame. Combust. Theor. Model. 20 (1):131–53. doi:10.1080/13647830.2015.1118555.
  • Li, L. K. B., and M. P. Juniper. 2013a. Lock-in and quasiperiodicity in hydrodynamically self-excited flames: Experiments and modelling. Proc. Combust. Inst. 34 (1):947–54. doi:10.1016/j.proci.2012.06.022.
  • Li, L. K. B., and M. P. Juniper. 2013b. Phase trapping and slipping in a forced hydrodynamically self-excited jet. J. Fluid Mech. 735, R5.
  • Li, L. K. B., and M. P. Juniper. 2013c. Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech. 726:624–55. doi:10.1017/jfm.2013.223.
  • Matveev, K. I., and F. E. C. Culick. 2003. A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175 (6):1059–83. doi:10.1080/00102200302349.
  • Miau, J. J., T. S. Leu, T. W. Liu, and J. H. Chou. 1997. On vortex shedding behind a circular disk. Exp. Fluids 23 (3):225–33. doi:10.1007/s003480050106.
  • Natarajan, R., and A. Acrivos. 1993. The instability of the steady flow past spheres and disks. J. Fluid Mech. 254:323–44. doi:10.1017/S0022112093002150.
  • Nicoud, F., and T. Poinsot. 2005. Thermoacoustic instabilities: Should the Rayleigh criterion be extended to include entropy changes? Combust. Flame 142:153–59. doi:10.1016/j.combustflame.2005.02.013.
  • Nori, V. N., and J. M. Seitzman. 2009. CH* chemiluminescence modeling for combustion diagnostics. Proc. Combust. Inst. 32 (1):895–903. doi:10.1016/j.proci.2008.05.050.
  • Pitz, R. W., and J. W. Daily. 1983. Combustion in a turbulent mixing layer formed at a rearward-facing step. AIAA J. 21 (11):1565–70. doi:10.2514/3.8290.
  • Poinsot, T. J., A. C. Trouve, D. P. Veynante, S. M. Candel, and E. J. Esposito. 1987. Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177:265–92. doi:10.1017/S0022112087000958.
  • Putnam, A. A., F. E. Belles, and J. A. C. Kentfield. 1986. Pulse combustion. Prog. Energ. Combust. Sci. 12 (1):43–79. doi:10.1016/0360-1285(86)90013-4.
  • Rayleigh, L. 1878. The explanation of certain acoustical phenomenon. Nature 18:319–21. doi:10.1038/018319a0.
  • Reuter, D. M., U. G. Hegde, and B. T. Zinn. 1990. Flowfield measurements in an unstable ramjet burner. J. Propul. Power 6 (6):680–85. doi:10.2514/3.23272.
  • Schadow, K., and E. Gutmark. 1992. Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energ. Combust. Sci. 18 (2):117–32. doi:10.1016/0360-1285(92)90020-2.
  • Schuller, T., D. Durox, and S. Candel. 2003. A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and v-flame dynamics. Combust. Flame 134 (1–2):21–34. doi:10.1016/S0010-2180(03)00042-7.
  • Sterling, J. D., and E. E. Zukoski. 1991. Nonlinear dynamics of laboratory combustor pressure oscillations. Combust. Sci. Technol. 77 (4–6):225–38. doi:10.1080/00102209108951729.
  • Tanida, Y., A. Okajima, and Y. Watanabe. 1973. Stability of a circular cylinder oscillating in uniform flow or in a wake. J. Fluid Mech. 61 (4):769–84. doi:10.1017/S0022112073000935.
  • Thielicke, W., and E. Stamhuis. 2014. Pivlab–Towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. J. Open Res. Softw. 2 (1). doi:10.5334/jors.bl.
  • Yang, J., M. Liu, G. Wu, Q. Liu, and X. Zhang. 2015. Low-frequency characteristics in the wake of a circular disk. Phys. Fluids 27 (6):064101. doi:10.1063/1.4922109.
  • Zinn, B. T., and T. C. Lieuwen. 2006. Combustion instabilities: Basic concepts - combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling. USA: AIAA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.