541
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Effect of Purity, Surface Modification and Iron Coating on Ignition and Combustion of Boron in Air

, ORCID Icon & ORCID Icon
Pages 1567-1586 | Received 07 Aug 2019, Accepted 05 Dec 2019, Published online: 11 Dec 2019

References

  • Ahn, J. P., K. H. Kim, J. S. Park, J. H. Chae, S. M. So, and H. S. Kim. 2011. Microstructural and mechanical properties of boron carbide ceramics by methanol washed powder. MRS Proc. 1224:1224-FF1210-1235.
  • Ao, W., J. H. Zhou, W. J. Yang, J. Z. Liu, Y. Wang, and K. F. Cen. 2014. Ignition, combustion, and oxidation of mixtures of amorphous and crystalline boron powders. Combust. Explo Shock 50 (6):664–69. doi:10.1134/S0010508214060070.
  • Balas, S., and B. Natan. 2016. Boron oxide condensation in a hydrocarbon-boron gel fuel ramjet. J. Propul. Power 32 (4):967–74. doi:10.2514/1.B35928.
  • Chintersingh, K.-L., M. Schoenitz, and E. L. Dreizin. 2018. Combustion of boron and boron–Iron composite particles in different oxidizers. Combust. Flame 192:44–58. doi:10.1016/j.combustflame.2018.01.043.
  • Chintersingh, K.-L., M. Schoenitz, and E. L. Dreizin. 2019. Boron doped with iron: Preparation and combustion in air. Combust. Flame 200:286–95. doi:10.1016/j.combustflame.2018.11.031.
  • Chintersingh, K.-L., Q. Nguyen, M. Schoenitz, and E. L. Dreizin. 2016. Combustion of boron particles in products of an air–Acetylene flame. Combust. Flame 172:194–205. doi:10.1016/j.combustflame.2016.07.014.
  • Conkling, J. A., and C. J. Mocella. 2010. Chemistry of pyrotechnics: Basic principles and theory. New York, NY: CRC Press, Taylor & Francis Group. 6000 Broken Sound Parkway NW, Suite 300.
  • Connell, T. L. J., G. A. Risha, R. A. Yetter, C. W. Roberts, and G. Young. 2015. Boron and polytetrafluoroethylene as a fuel composition for hybrid rocket applications. J. Propuls. Power 31 (1):373–85. doi:10.2514/1.B35200.
  • Corcoran, A. L., S. Mercati, H. Nie, M. Milani, L. Montorsi, and E. L. Dreizin. 2013b. Combustion of fine aluminum and magnesium powders in water. Combust. Flame 160 (10):2242–50. doi:10.1016/j.combustflame.2013.04.019.
  • Corcoran, A. L., V. K. Hoffmann, and E. L. Dreizin. 2013a. Aluminum particle combustion in turbulent flames. Combust. Flame 160 (3):718–24. doi:10.1016/j.combustflame.2012.11.008.
  • Dreizin, E. L. 2000. Phase changes in metal combustion. Prog. Energ. Combust. 26 (1):57–78. doi:10.1016/S0360-1285(99)00010-6.
  • Dreizin, E. L. 2003. Effect of phase changes on metal-particle combustion processes. Combust. Explo. Shock+ 39 (6):681–93. doi:10.1023/B:CESW.0000007682.37878.65.
  • Dreizin, E. L., D. G. Keil, W. Felder, and E. P. Vicenzi. 1999. Phase changes in boron ignition and combustion. Combust. Flame 119 (3):272–90. doi:10.1016/S0010-2180(99)00066-8.
  • Farrell, D., S. A. Majetich, and J. P. Wilcoxon. 2003. Preparation and characterization of monodisperse Fe nanoparticles. J. Phys. Chem. B 107 (40):11022–30. doi:10.1021/jp0351831.
  • Gany, A. 2014. Thermodynamic limitation on boron energy realization in ramjet propulsion. Acta Astronaut 98 (1):128–32. doi:10.1016/j.actaastro.2014.01.023.
  • Gany, A., and Y. M. Timnat. 1993. Advantages and drawbacks of boron-fueled propulsion. Acta Astronaut 29 (3):181–87. doi:10.1016/0094-5765(93)90047-Z.
  • Goroshin, S., J. Mamen, A. Higgins, T. Bazyn, N. Glumac, and H. Krier (2007) Emission spectroscopy of flame fronts in aluminum suspensions. Proceedings of the Combustion Institute, Heidelberg. 31: 2011–19.
  • Hashim, S. A., P. K. Ojha, S. Karmakar, A. Roy, and D. Chaira. 2019b. Experimental observation and characterization of B−HTPB-based solid fuel with addition of iron particles for hybrid gas generator in ducted rocket applications. Propell. Explos. Pyrot. doi:10.1002/prep.201900009.
  • Hashim, S. A., S. Karmakar, and A. Roy. 2019a. Effects of Ti and Mg particles on combustion characteristics of boron–HTPB-based solid fuels for hybrid gas generator in ducted rocket applications. Acta Astronaut 160:125–37. doi:10.1016/j.actaastro.2019.04.002.
  • Karmakar, S., N. Wang, S. Acharya, and K. M. Dooley. 2013. Effects of rare-earth oxide catalysts on the ignition and combustion characteristics of boron nanoparticles. Combust. Flame 160 (12):3004–14. doi:10.1016/j.combustflame.2013.06.030.
  • Kim, K. H., C., Jae Hong, J. S. Park, D. K. Kim, K. B. Shim, and B. H. Lee. 2007. Methanol washing effects on spark plasma sintering behavior and mechanical properties of B4C ceramics. J. Ceram. Process. Res 8 (4):238–42.
  • King, M. K. 1982. Ignition and combustion of boron particles and clouds. J. Spacecraft Rockets 19 (4):294–306. doi:10.2514/3.62256.
  • Liu, T., X. Chen, H. Xu, A. Han, M. Ye, and G. Pan. 2015. Preparation and properties of boron-based Nano-B/NiO thermite. Propell. Explos. Pyrot. 40 (6):873–79. doi:10.1002/prep.201400308.
  • Liu, T.-K., S.-P. Luh., and H.-C. Perng. 1991. Effect of boron particle surface coating on combustion of solid propellants for ducted rockets. Propell. Explos. Pyrot 16 (4):156–66. doi:10.1002/prep.19910160403.
  • Liu, X., J. Gonzales, M. Schoenitz, and E. L. Dreizin. 2017. Effect of purity and surface modification on stability and oxidation kinetics of boron powders. Thermochim. Acta 652:17–23. doi:10.1016/j.tca.2017.03.007.
  • Liu, X., K.-L. Chintersingh, M. Schoenitz, and E. L. Dreizin. 2018. Reactive composite boron–magnesium powders prepared by mechanical milling. J. Propul. Power 34 (3):787–94. doi:10.2514/1.B36315.
  • Mohan, G., and F. A. Williams. 1972. Ignition and combustion of boron in O2/inert atmospheres. Aiaa J 10 (6):776–83. doi:10.2514/3.50210.
  • Mohan, S., M. A. Trunov, and E. L. Dreizin. 2008. Heating and ignition of metallic particles by a CO2 laser. J. Propul. Power 24 (2):199–205. doi:10.2514/1.30195.
  • Natan, B., and A. Gany. 1991. Ignition and combustion of boron particles in the flowfield of a solid fuel ramjet. J. Propul. Power 7 (1):37–43. doi:10.2514/3.23291.
  • Peng, S., C. Wang, J. Xie, and S. Sun. 2006. Synthesis and stabilization of monodisperse Fe nanoparticles. J. Amer. Chem. Soc. 128 (33):10676–77. doi:10.1021/ja063969h.
  • Phillips, J., and J. A. Dumesic. 1984. Thermal Decomposition of Iron Pentacarbonyl on Titania. Catalytic Mater. 248:3–19.
  • Rizzo, H. F. 1960. Oxidation of boron at temperatures between 400 and 1300°C in air. Boston, MA: Springer US.
  • Rosenband, V., A. Gany, and Y. M. Timnat. 1998. Magnesium and boron combustion in hot steam atmosphere. Defence Sci. J. 48 (3):309–15. doi:10.14429/dsj.48.3953.
  • Rosenband, V., B. Natan, and A. Gany. 1995. Ignition of boron particles coated by a thin titanium film. J. Propul. Power 11 (6):1125–31. doi:10.2514/3.23950.
  • Solozhenko, V. L., and V. Z. Turkevich. 2018. Phase diagram of the B–BN system at pressures up to 24 GPa: Experimental study and thermodynamic analysis. J. Phys. Chem. C 122 (15):8505–09. doi:10.1021/acs.jpcc.8b00102.
  • Sun, Y., K.-L. Chintersingh, M. Schoenitz, and E. L. Dreizin. 2019. Reactive shell model for boron oxidation. J. Phys. Chem. C 123 (18):11807–13. doi:10.1021/acs.jpcc.9b03363.
  • Turkevich, V. Z., D. V. Turkevich, and V. L. Solozhenko. 2016. Phase diagram of the B–B2O3 system at pressures to 24 GPa. J. Superhard Mater. 38 (3):216–18. doi:10.3103/S1063457616030096.
  • Ulas, A., K. K. Kuo, and C. Gotzmer. 2001. Ignition and combustion of boron particles in fluorine-containing environments. Combust. Flame 127 (1):1935–57. doi:10.1016/S0010-2180(01)00299-1.
  • Wang, S., A. L. Corcoran, and E. L. Dreizin. 2015. Combustion of magnesium powders in products of an air/acetylene flame. Combust. Flame 162 (4):1316–25. doi:10.1016/j.combustflame.2014.10.016.
  • Wang, S., M. Schoenitz, and E. L. Dreizin. 2017. Combustion of boron and boron-containing reactive composites in laminar and turbulent air flows. Combust. Sci. Technol. 189 (4):683–97. doi:10.1080/00102202.2016.1246441.
  • Wang, S., S. Mohan, and E. L. Dreizin. 2016. Effect of flow conditions on burn rates of metal particles. Combust. Flame 168:10–19. doi:10.1016/j.combustflame.2016.03.014.
  • Wayne, R. 2019. ImageJ. Bethesda, Maryland, USA: Research Services Branch, National Institute of Mental Health.
  • Williams, P. D., and D. D. Hawn. 1991. Aqueous dispersion and slip casting of boron carbide powder: Effect of pH and oxygen content. J. Amer. Ceram. Soc. 74 (7):1614–18. doi:10.1111/j.1151-2916.1991.tb07147.x.
  • Wu, W. J., W. J. Chi, Q. S. Li, J. N. Ji, and Z. S. Li. 2017. Strategy of improving the stability and detonation performance for energetic material by introducing the boron atoms. J. Phys. Org. Chem. 30 (12):e3699. doi:10.1002/poc.3699.
  • Xi, J., J. Liu, Y. Wang, D. Liang, and J. Zhou. 2014b. Effect of metal hydrides on the burning characteristics of boron. Thermochim. Acta 597:58–64. doi:10.1016/j.tca.2014.10.017.
  • Xi, J., J. Liu, Y. Wang, Y. Hu, Y. Zhang, and J. Zhou. 2014a. Metal oxides as catalysts for boron oxidation. J. Propul. Power 30 (1):47–53. doi:10.2514/1.B35037.
  • Yamamuro, S., M. Okano, T. Tanaka, K. Sumiyama, N. Nozawa, T. Nishiuchi, S. Hirosawa, and T. Ohkubo. 2011. Direct iron coating onto Nd-Fe-B Powder by thermal decomposition of iron pentacarbonyl. J. Phys.: Conf. Ser. 266 (1):012050.
  • Yang, W., W. Ao, J. Zhou, J. Liu, K. Cen, and Y. Wang. 2013. Impacts of particle size and pressure on reactivity of boron oxidation. J. Propul. Power 29 (5):1207–13. doi:10.2514/1.B34785.
  • Yeh, C. L., and K. K. Kuo. 1996. Ignition and combustion of boron particles. Prog. Energ. Combust. 22 (6):511–41. doi:10.1016/S0360-1285(96)00012-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.