231
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Study of CO Sources and Early-warning Concentration of Spontaneous Combustion at Air Return Corner in Fully Mechanized Mining Faces

, , , , &
Pages 1587-1604 | Received 01 Jun 2019, Accepted 08 Dec 2019, Published online: 17 Dec 2019

References

  • Baris, K., S. Kizgut, and V. Didari. 2012. Low-temperature oxidation of some Turkish coals. Fuel 93:423–32. doi:10.1016/j.fuel.2011.08.066.
  • Beamish, B. B., M. A. Barakat, and J. D. S. George. 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. Int. J. Coal Geol. 45:217–24. doi:10.1016/S0166-5162(00)00034-3.
  • Deng, J., Z. Jiang, and L. Xiao. 2008. Analysis on produce mechanism and influence factor of CO gas on the coal exploitation working face. J. Coal Sci. Eng. 14:432–35. doi:10.1007/s12404-008-0094-1.
  • Jia, H., M. Yu, and Y. Xu. 2013. Analysis on the genetic type and mechanism identification of carbon monoxide in the coalmine. J. China Coal Soc. 38:1812–18.
  • Li, Z. 1999. Mechanism of free radical reactions in spontaneous combustion of coal. J. China Univ. Min. Technol. 25:111–14.
  • Li, Z., B. Kong, A. Wei, Y. Yang, Y. Zhou, and L. Zhang. 2016. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res. 23:23593–605. doi:10.1007/s11356-016-7589-x.
  • Liu, W., and Y. Qin. 2017. A quantitative approach to evaluate risks of spontaneous combustion in longwall gobs based on CO emissions at upper corner. Fuel 210:359–70. doi:10.1016/j.fuel.2017.08.083.
  • Qu, L., D. Song, and B. Tan. 2018. Research on the critical temperature and stage characteristics for the spontaneous combustion of different metamorphic degrees of coal. Int. J. Coal Prep. Util. 38:221–36. doi:10.1080/19392699.2016.1226170.
  • Song, Z., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal Geol. 133:72–99. doi:10.1016/j.coal.2014.09.004.
  • Tang, Y. 2015. Sources of underground CO: Crushing and ambient temperature oxidation of coal. J. Loss. Prevent. Proc. 38:50–57. doi:10.1016/j.jlp.2015.08.007.
  • Wang, C., R. Ding, G. Li, and L. Zheng. 2007. Research on infrared hot image in deformation and destruction course under pick cutting. Rock Soil Mech. 28:449–54.
  • Wang, H., B. Z. Dlugogorski, and M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wen, H., Z. Yu, S. Fan, X. Zhai, and W. Liu. 2017. Prediction of spontaneous combustion potential of coal in the gob area using co extreme concentration: A case study. Combust. Sci. Technol. 189:1713–27. doi:10.1080/00102202.2017.1327430.
  • Wu, J., H. Guo, J. Song, and Y. Li. 2010. Experiment study on desorption method to measure in-situ content of seam in Tashan Mine. Coal Sci. Technol. 38:54–56.
  • Wu, L., and J. Wang. 1997. Study on thermal infrared radiation temperature omen in coal-measure rock yielding underground pressure. J. China Min. Mag. 6:42–48.
  • Xiao, Y., Q. Li, J. Deng, C. Shu, and W. Wang. 2017. Experimental study on the corresponding relationship between the index gases and critical temperature for coal spontaneous combustion. J. Therm. Anal. Calorim. 127:1009–17. doi:10.1007/s10973-016-5770-6.
  • Xie, J., S. Xue, W. Chen, and G. Wang. 2011. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system. Int. J. Coal Geol. 85:123–27. doi:10.1016/j.coal.2010.10.007.
  • Xu, Q., S. Yang, Z. Tang, J. Cai, Y. Zhong, and B. Zhou. 2018. Free radical and functional group reaction and index gas CO emission during coal spontaneous combustion. Combust. Sci. Technol. 190:834–48. doi:10.1080/00102202.2017.1414203.
  • Yang, Y., Z. Li, S. Hou, J. Li, L. Si, and Y. Zhou. 2017. Identification of primary co in coal seam based on oxygen isotope method. Combust. Sci. Technol. 189:1924–42. doi:10.1080/00102202.2017.1340277.
  • Yuan, L., and A. C. Smith. 2011. CO and CO2 emissions from spontaneous heating of coal under different ventilation rates. Int. J. Coal Geol. 88:24–30. doi:10.1016/j.coal.2011.07.004.
  • Zhai, X., L. Ma, and J. Deng. 2011. Study and application of CO content prediction model to upper corner of coal mining face. Coal Sci. Technol. 39:59–62.
  • Zhang, Y., J. Wu, L. Chang, J. Wang, and Z. Li. 2013. Changes in the reaction regime during low-temperature oxidation of coal in confined spaces. J. Loss. Prevent. Proc. 26:1221–29. doi:10.1016/j.jlp.2013.05.008.
  • Zhang, Y., Y. Li, Y. Huang, S. Li, and W. Wang. 2018. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology. J. Therm. Anal. Calorim. 131:2963–74. doi:10.1007/s10973-017-6738-x.
  • Zhu, H., M. Chang, H. Wang, and Y. Cai. 2017. Study on existence of coal seam primal CO gas. Coal Technol. 36:139–40.
  • Zhu, L., Y. Wang, and L. Guo. 2005. Donghuantuo Coal Mine coal seam CO influence factor analysis. Saf. Coal Mine 36:53–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.