360
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Characteristic Analysis of Pulverized Coal Combustion

, , &
Pages 1605-1622 | Received 23 May 2019, Accepted 10 Dec 2019, Published online: 09 Jan 2020

References

  • Agency, I. E. 2014. Medium-term coal market report, medium-term coal market report 2011:Market trends and projections to 2016.
  • Arenillas, A., F. Rubiera, J. J. Pis, M. J. Cuesta, M. J. Iglesias, A. Jiménez, and S. Ruiz. 2003. Thermal behaviour during the pyrolysis of low rank perhydrous coals. J. Anal. Appl. Pyrolysis 68–69:371–85. doi:10.1016/S0165-2370(03)00031-7.
  • Carras, J. N., and B. C. Young. 1994. Self-heating of coal and related materials: Models, application and test methods. Prog. Energy Combust. Sci. 20 (1):1–15. doi:10.1016/0360-1285(94)90004-3.
  • Claudia, B. 2018. State-of-the-artapplications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 65:109–35. doi:10.1016/j.pecs.2017.10.004.
  • Deng, J., Y. Yang, Y. N. Zhang, B. Liu, and C. M. Shu. 2018. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion. Energy 160:1174–85. doi:10.1016/j.energy.2018.07.040.
  • Giroux, L., J. P. Charland, and J. A. MacPhee. 2006. Application of thermogravimetric fourier transform infrared spectroscopy (TG-FTIR) to the analysis of oxygen functional groups in coal. Energy Fuels 20:1988–96. doi:10.1021/ef0600917.
  • Green, U., K. Keinan-Adamsky, S. Attia, Z. Aizenshtat, G. Goobes, S. Ruthstein, and H. Cohen. 2014. Elucidating the role of stable carbon radicals in the low temperature oxidation of coals by coupled EPR-NMR spectroscopy-a method to characterize surfaces of porous carbon materials. Phys. Chem. Chem. Phys. 16 (20):9364–70. doi:10.1039/c4cp00791c.
  • Gurgel, C. A., J. Saastamoinen, J. A. Carvalhojr, and M. Aho. 1999. Overlapping of the devolatilization and char combustion stages in the burning of coal particles. Combust. Flame 116:567–79. doi:10.1016/S0010-2180(98)00064-9.
  • Han, F., A. Meng, Q. Li, and Y. Zhang. 2016. Thermal decomposition and evolved gas analysis (TG-MS) of lignite coals from Southwest China. J. Energy Inst. 89:94–100. doi:10.1016/j.joei.2015.01.007.
  • Hodek, W., J. Kirschstein, and K. H. V. Heek. 1991. Reactions of oxygen containing structures in coal pyrolysis. Fuel 70:424–28. doi:10.1016/0016-2361(91)90133-U.
  • Hu, R. Z., S. L. Gao, F. Q. Zhao, Q. Z. Shi, T. L. Zhang, and J. J. Zhang. 2008. Thermal analysis kinetics. Beijing: Science Press.
  • Itay, M., C. Hill, and D. Glasser. 1989. A study of the low temperature oxidation of coal. Fuel Process. Technol. 21 (2):81–97. doi:10.1016/0378-3820(89)90063-5.
  • Kam, A. Y., A. N. Hixson, and D. D. Perlmutter. 1976. The oxidation of bituminous coal-I development of a mathematical model. Chem. Eng. Sci. 31 (9):815–19. doi:10.1016/0009-2509(76)80055-3.
  • Karsner, G. G., and D. D. Perlmutter. 1982. Model for coal oxidation kinetics. 1. Reaction under chemical control. Fuel 61 (1):29–34. doi:10.1016/0016-2361(82)90289-7.
  • Krishnaswamy, S., S. Bhat, R. D. Gunn, and P. K. Agarwal. 1996. Low-temperature oxidation of coal. 1. A single-particle reaction–Diffusion model. Fuel 75 (3):333–43. doi:10.1016/0016-2361(95)00180-8.
  • Liu, J., X., . X., . M. Jiang, J. Shen, and H. Zhang. 2014a. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation. Energy Convers. Manage. 87:1027–38. doi:10.1016/j.enconman.2014.07.053.
  • Liu, J. X., X. M. Jiang, J. Shen, and H. Zhang. 2014b. Pyrolysis of superfine pulverized coal. Part 2. Mechanisms of carbon monoxide formation. Energy Convers. Manage. 87:1039–49. doi:10.1016/j.enconman.2014.07.055.
  • Liu, M., J. Li, and Y. F. Duan. 2015. Effects of solvent thermal treatment on the functional groups transformation and pyrolysis kinetics of Indonesian lignite. Energy Convers. Manage. 103:66–72. doi:10.1016/j.enconman.2015.06.047.
  • Liu, M., D. Margaritis, and Y. Zhang. 2013. Market-driven coal prices and state-administered electricity prices in China. Energy Econ. 40:167–75. doi:10.1016/j.eneco.2013.05.021.
  • Nelson, P. F., M. D. Kelly, and M. J. Wornat. 1991. Conversion of fuel nitrogen in coal volatile to NOx precursors under rapid heating conditions. Fuel 30:403–07. doi:10.1016/0016-2361(91)90130-3.
  • Niksa, S. 1996. Flashchain theory for rapid coal devolatilization kinetics. 7. Predicting the release of oxygen species from various coals. Energy Fuels 10:173–87. doi:10.1021/ef950067l.
  • Petrakis, L., and D. W. Grandy. 1978. Electron spin resonance spectrometric study of free radicals in coals. Anal. Chem. 50:303–08. doi:10.1021/ac50024a034.
  • Rao, Z., Y. Zhao, C. Huang, C. Duan, and J. He. 2015. Recent developments in drying and dewatering for low rank coals. Progr. Energy Combust. Sci. 46:1–11. doi:10.1016/j.pecs.2014.09.001.
  • Robert, P., and W. Helena. 2006. The influence of oxidation with HNO3 on the surface composition of high-sulphur coals XPS study. Fuel Process. Technol. 87:1021–29. doi:10.1016/j.fuproc.2006.08.001.
  • Schafer, H. N. S. 1979. Pyrolysis of brown coals. 2. Decomposition of acidic groups on heating in the range 100-900 °C. Fuel 58:673–79. doi:10.1016/0016-2361(79)90222-9.
  • Shi, T., X. Wang, J. Deng, and Z. Wen. 2005. The mechanism at the initial stage of the room temperature oxidation of coal. Combust. Flame 140 (4):332–45. doi:10.1016/j.combustflame.2004.10.012.
  • Silbernagel, B. G., L. A. Gebhard, G. R. Dyrkacz, and C. A. A. Bloomquist. 1986. Electron spin resonance of isolated coal macerals. Fuel 65:558–65. doi:10.1016/0016-2361(86)90049-9.
  • Solomon, P. R., D. G. Hamblen, R. M. Carangelo, M. A. Serio, and G. V. Deshpande. 1998. Models of tar formation during coal devolatilization. Combust. Flame 71:137–46. doi:10.1016/0010-2180(88)90003-X.
  • Varma, A. K., M. Kumar, V. K. Saxena, A. Sarkar, and S. K. Banerjee. 2014. Petrographic controls on combustion behavior of inertinite rich coal and char and fly ash formation. Fuel 128:199–209. doi:10.1016/j.fuel.2014.03.004.
  • Wang, C., Y. Yang, and Y. Tsai. 2016. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. J. Therm. Anal. Calorim. 126 (3):1591–602. doi:10.1007/s10973-016-5685-2.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2002. Kinetic modeling of low-temperature oxidation of coal. Combust. Flame 131 (4):452–64. doi:10.1016/S0010-2180(02)00416-9.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, H. M., and C. F. You. 2014. Experimental investigation into the spontaneous ignition behavior of upgraded coal products. Energy Fuels 28:2267–71. doi:10.1021/ef402569s.
  • Xi, Z. L., X. D. Wang, X. L. Wang, L. Wang, D. Li, X. Y. Guo, and L. W. Jin. 2019. Self-hardening Thermoplastic Foam for the Inhibition of Coal Oxidation at Low Temperatures. Combust. Sci. Technol. 191 (11):1942–59. doi:10.1080/00102202.2018.1539967.
  • Xia, T. Q., F. B. Zhou, F. Gao, J. H. Kang, J. S. Liu, and J. G. Wang. 2015. Simulation of coal self heating processes in underground methane-rich coal seams. Int. J. Coal Geol. 141–142:1–12. doi:10.1016/j.coal.2015.02.007.
  • Xu, Y., Y. Liu, F. Zhang, W. Di, and Y. Zhang. 2017. Clean coal technologies in China based on methanol platform. Catal. Today 298:61–68. doi:10.1016/j.cattod.2017.05.070.
  • Yang, J. L., P. G. Stansberry, J. W. Zondlo, and A. H. Stiller. 2002. Characteristics and carbonization behaviors of coal extracts. Fuel Process. Technol. 79:207–15. doi:10.1016/S0378-3820(02)00177-7.
  • Yip, K., E. Ng, C. Z. Li, J. I. Hayashi, and H. W. Wu. 2011. A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars. Proc. Combust. Inst. 33:1755–62. doi:10.1016/j.proci.2010.07.073.
  • Zhang, L., E. Binner, Y. Qiao, and C. Z. Li. 2010. In situ diagnostics of Victorian brown coal combustion in O2/N2 and O2/CO2 mixtures in drop-tube furnace. Fuel 89,2703–2712.
  • Zhou, F. B., W. X. Ren, D. M. Wang, T. L. Song, X. Li, and Y. L. Zhang. 2006. Application of three phase foam to fight an extraordinarily serious coal mine fire. Int. J. Coal Geol. 67 (1–2):95–100. doi:10.1016/j.coal.2005.09.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.