218
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Spatiotemporal Distributions of the Temperature and Index Gases during the Dynamic Evolution of Coal Spontaneous Combustion

, , , &
Pages 1679-1695 | Received 24 Oct 2019, Accepted 22 Dec 2019, Published online: 26 Dec 2019

References

  • Carras, J. N., S. T. Day, A. Saghafi, and D. J. Williams. 2009. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. International Journal of Coal Geology 78 (2):161–68. doi:10.1016/j.coal.2008.12.001.
  • Chen, X. K., H. T. Li, Q. H. Wang, and Y. N. Zhang. 2018. Experimental investigation on the macroscopic characteristic parameters of coal spontaneous combustion under adiabatic oxidation conditions with a mini combustion furnace. Combustion Science and Technology 190 (6):1075–95. doi:10.1080/00102202.2018.1428570.
  • Deng, J., C. K. Lei, Y. Xiao, K. Cao, L. Ma, W. F. Wang, and B. Laiwang. 2018a. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel 211:458–70. doi:10.1016/j.fuel.2017.09.027.
  • Deng, J., L. F. Ren, L. Ma, C. K. Lei, G. M. Wei, and W. F. Wang. 2018b. Effect of oxygen concentration on low-temperature exothermic oxidation of pulverized coal. Thermochimica Acta 667:102–10. doi: 10.1016/j.tca.2018.07.012.
  • Deng, J., Y. Xiao, Q. W. Li, J. H. Lu, and H. Wen. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel 157:261–69. doi:10.1016/j.fuel.2015.04.063.
  • Dzonzi-Undi, J., and S. X. Li. 2015. SWOT analysis of safety and environmental regulation for China and USA: Its effect and influence on sustainable development of the coal industry. Environmental Earth Sciences 74 (8):6395–406. doi:10.1007/s12665-015-4751-6.
  • Forde, O. N., K. U. Mayer, and D. Hunkeler. 2019. Identification, spatial extent and distribution of fugitive gas migration on the well. Science of the Total Environment 652 (20):356–66. doi:10.1016/j.scitotenv.2018.10.217.
  • Guan, C., S. M. Liu, C. W. Li, Y. Wang, and Y. X. Zhao. 2018. The temperature effect on the methane and CO2 adsorption capacities of illinois coal. Fuel 211:241–50. doi:10.1016/j.fuel.2017.09.046.
  • Huang, J., J. Bruining, and K. H. A. A. Wolf. 2001. Modeling of gas flow and temperature fields in underground coal fires. Fire Safety Journal 36 (5):477–89. doi:10.1016/S03797112(01)00003-0.
  • Kong, B., Z. H. Li, E. Y. Wang, W. Lu, L. Chen, and G. S. Qi. 2018. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. Process Safety and Environmental Protection 119:285–194. doi:10.1016/j.psep.2018.08.002.
  • Kong, B., Z. H. Li, Y. L. Yang, Z. Liu, and D. C. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environmental Science and Pollution Research 24:23453–70. doi:10.1007/s11356-017-0209-6.
  • Kuenzer, C., J. Z. Zhang, A. Tetzlaff, P. U. Dijk, S. Voigt, H. Mehl, and W. Wagner. 2007. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Applied Geography 27:42–62. doi:10.1016/j.apgeog.2006.09.007.
  • Lei, C. K., J. Deng, K. Cao, L. Ma, Y. Xiao, and L. F. Ren. 2018. A random forest approach for predicting coal spontaneous combustion. Fuel 223:63–73. doi:10.1016/j.fuel.2018.03.005.
  • Lei, C. K., J. Deng, K. Cao, Y. Xiao, L. Ma, W. F. Wang, T. Ma, and C. M. Shu. 2019. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob. Fuel 239:297–311. doi:10.1016/j.fuel.2018.11.006.
  • Li, H. T., X. K. Chen, C. M. Shu, and Q. H. Wang. 2019a. Effects of oxygen concentration on the macroscopic characteristic indexes of high-temperature oxidation of coal. Journal of the Energy Institute 92 (3):554–66. doi:10.1016/j.joei.2018.04.003.
  • Li, J. H., Z. H. Li, Y. L. Yang, and C. J. Wang. 2018a. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. Fuel 233:237–46. doi:10.1016/j.fuel.2018.06.039.
  • Li, J. L., W. Lu, Y. T. Liang, G. S. Qi, B. Kong, and X. M. Hu. 2019b. Variation of CO2/CO ratio during pure-oxidation of feed coal. Fuel. doi:10.1016/j.fuel.2019.116588.
  • Li, L., B. T. Qin, D. Ma, H. Zhuo, H. J. Liang, and A. Guo. 2018b. Unique spatial methane distribution caused by spontaneous coal combustion in coal mine goafs: An experimental study. Process Safety and Environmental Protection 116:199–207. doi:10.1016/j.psep.2018.01.014.
  • Liang, Y. T., J. Zhang, L. C. Wang, H. Z. Luo, and T. Ren. 2019. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review. Journal of Loss Prevention in the Process Industries 57:208–22. doi:10.1016/j.jlp.2018.12.003.
  • Nimaje, D. S., and D. P. Tripathy. 2016. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel 163:139–47. doi:10.1016/j.fuel.2015.09.041.
  • Onifade, M., and B. Genc. 2018. Spontaneous combustion of coals and coal-shales. International Journal of Mining Science and Technology 28 (6):933–40. doi:10.1016/j.ijmst.2018.05.013.
  • Qiu, X. B., J. Li, Y. Wei, E. Zhang, N. Li, C. Li, H. Yuan, and Z. Zang. 2019. Study on the oxidation and release of gases in spontaneous coal combustion using a dual-species sensor employing laser absorption spectroscopy. Infrared Physics & Technology 102:103042. doi:10.1016/j.infrared.2019.103042.
  • Qu, L., D. Z. Song, and B. Tan. 2016. Research on the critical temperature and stage characteristics for the spontaneous combustion of different metamorphic degrees of coal. International Journal of Coal Preparation and Utilization 38:221–36. doi:10.1080/19392699.2016.1226170.
  • Song, Z. Y., H. Q. Zhu, J. Y. Xu, X. F. Qin, and Z. Zhang. 2014. An approach to calculate oxygen consumption rate of underground coal fires with lean oxygen concentration and incomplete combustion at high temperature. Journal of China Coal Society 39:2439–45. doi:10.13225/j.cnki.jccs.2013.1886.
  • Taraba, B., Z. Michalec, V. Michalcová, T. Blejchař, M. Bojko, and M. Kozubková. 2014. CFD simulations of the effect of wind on the spontaneous heating of coal stock piles. Fuel 118:107–12. doi:10.1016/j.fuel.2013.10.064.
  • Wang, D. M., H. H. Xin, and X. Y. Qi. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combustion and Flame 163:467–460. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, G., Z. H. Luo, and T. Y. Liang. 2015. Temperature field simulation of gob influenced by atmospheric pressure. Journal of Central South University 22:4366–71. doi:10.1007/s11771-015-2985-9.
  • Wolf, K. H., and H. Bruining. 2007. Modelling the interaction between underground coal fires and their roof rocks. Fuel 86:2761–77. doi:10.1016/j.fuel.2007.03.009.
  • Xia, T. Q., F. B. Zhou, J. S. Liu, J. H. Kang, and F. Guo. 2014. A fully coupled hydro-thermo-mechanical model for the spontaneous combustion of underground coal seams. Fuel 125:106–15. doi:10.1016/j.fuel.2014.02.023.
  • Xu, J. C. 2001. Determination theory of coal spontaneous combustion zone. Beijing: China Coal Industry Publishing House.
  • Xu, Q., S. Q. Yang, Z. Q. Tang, J. W. Cai, Y. Zhong, and B. Z. Zhou. 2018. Free radical and functional group reaction and index gas CO emission during coal spontaneous combustion. Combustion Science and Technology 190 (5):834–48. doi:10.1080/00102202.2017.1414203.
  • Yi, X., Y. Xiao, H. F. Lü, C. M. Shu, and J. Deng. 2018. Thermokinetic behavior and microcharacterization during the spontaneous combustion of 1/3 coking coal. Combustion Science and Technology 191:1769–88. doi:10.1080/00102202.2018.1534839.
  • Zhang, B., P. F. Fu, Y. Liu, F. Yue, J. Chen, H. Zhou, and C. Zheng. 2017. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion. Applied Thermal Engineering 113:1303–12. doi:10.1016/j.applthermaleng.2016.11.103.
  • Zhang, H. B., J. S. Liu, and D. Elsworth. 2008. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. International Journal of Rock Mechanics and Mining Sciences. 45 (8):1226–36. doi:10.1016/j.ijrmms.2007.11.007.
  • Zhu, J. F., N. He, and D. H. Li. 2012. The Relationship between oxygen consumption rate and temperature during coal spontaneous combustion. Safety Science 50 (4):842–45. doi:10.1016/j.ssci.2011.08.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.