204
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Methane–Coal Dust Mixed Explosion in Transversal Pipe Networks

, , , &
Pages 1734-1746 | Received 10 Oct 2019, Accepted 28 Dec 2019, Published online: 03 Jan 2020

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017a. The flame deflagration of hybrid methane coal dusts in a large-scale detonation tube (LSDT). Fuel 194:491–502. doi:10.1016/j.fuel.2017.01.038.
  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017b. Impact of suspended coal dusts on methane deflagration properties in a large-scale straight duct. J. Hazard. Mater. 338:334–42. doi:10.1016/j.jhazmat.2017.05.030.
  • Blanchard, R., D. Arndt, R. Grätz, M. Poli, and S. Scheider. 2010. Explosions in closed pipes containing baffles and 90 degree bends. J. Loss Prev. Process. Ind. 23 (2):253–59. doi:10.1016/j.jlp.2009.09.004.
  • Dong, C. J., M. S. Bi, and Y. H. Zhou. 2012. Effects of obstacles and deposited coal dust on characteristics of premixed methane–Air explosions in a long closed pipe. Saf. Sci. 50 (9):1786–91. doi:10.1016/j.ssci.2012.04.002.
  • Eckhoff, R. K. 2009. Understanding dust explosions. The role of powder science and technology. J. Loss Prev. Process. Ind 22 (1):105–16. doi:10.1016/j.jlp.2008.07.006.
  • Fei, G. Y. 1997. Experiments on detonation of deposited coal dust by gas explosion in a blind headway. Coal Eng. 4:16–19.
  • Hu, S. Q., C. J. Yu, and Y. X. Tan. 2010. Experimental research on secondary explosion coal dust detonated by gas explosion in pipeline. J. Basic Sci. Eng. 18:895.
  • Huang, Y., G. A. Risha, V. Yang, and R. A. Yetter. 2007. Combustion of bimodalnano/micron-sized aluminum particle dust in air. Proc. Combust. Inst. 31:2001–09. doi:10.1016/j.proci.2006.08.103.
  • Jiang, B. Y., M. Q. Su, Z. G. Liu, F. Cai, S. Yuan, S. Shi, and B. Lin. 2016. Effects of changes in fuel volume on the explosion-proof distance and the multipara meter attenuation characteristics of methane-air explosions in a semi-confined pipe. J. Loss Prev. Process. Ind. 39:17–23. doi:10.1016/j.jlp.2015.11.008.
  • Jiang, B. Y., M. Y. Tang, and S. L. Shi. 2017. Multiparameter acceleration characteristics of premixed methane/air explosion in a semi-confined pipe. J. Loss Prev. Process. Ind. 49:139–44. doi:10.1016/j.jlp.2017.06.012.
  • Li, Q. Z., C. C. Yuan, Q. L. Tao, Y. N. Zheng, and Y. Zhao. 2018. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors. Fuel 215:417–28. doi:10.1016/j.fuel.2017.11.093.
  • Liu, S. H., Y. F. Cheng, X. R. Meng, H. H. Ma, S. X. Song, W. J. Liu, and Z. W. Shen. 2018. Influence of particle size polydispersity on coal dust explosibility. J. Loss Prev. Process. Ind. 56:444–50. doi:10.1016/j.jlp.2018.10.005.
  • Lv, C., and Z. Z. Wu. 2017. Flame thickness and propagation characteristics of premixed methane-air explosion with a small filling ratio in an open-ended steel pipe. Appl. Therm. Eng. 119:617–21. doi:10.1016/j.applthermaleng.2017.03.104.
  • Mishra, D. P., D. C. Panigrahi, and P. Kumar. 2018. Computational investigation on effects of geo-mining parameters on layering and dispersion of methane in underground coal mines- a case study of Moonidih Colliery. J. Nat. Gas Sci. Eng. 53:110–24. doi:10.1016/j.jngse.2018.02.030.
  • Niu, Y. H., B. M. Shi, and B. Y. Jiang. 2019. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks. Appl. Therm. Eng. 154:18–23. doi:10.1016/j.applthermaleng.2019.03.059.
  • Pineau, J. P., and G. Ronchail. 1982. Propagation of dust explosions in ducts. The International Symposium on Control and Prevention of Dust Explosions, Basel, Switzerland.
  • Pineau, J. P., and G. Ronchail. 1986. Propagation of coal dust explosions in pipes. The Symposium on Industrial Explosions, Pittsburg, USA.
  • Sapko, M. J., K. L. Cashdollar, and G. M. Green. 2007. Coal dust particle size survey of US mines. J. Loss Prev. Process. Ind. 20:616–20. doi:10.1016/j.jlp.2007.04.014.
  • Song, Y. F., N. Bouras, and Q. Zhang. 2018. Explosion energy of methane/deposited coal dust and inert effects of rock dust. Fuel 228:112–22. doi:10.1016/j.fuel.2018.04.155.
  • Tang, F. D., A. J. Higgins, and S. Goroshin. 2009. Effect of discreteness on heterogeneous flames: Propagation limits in regular and random particle arrays. Combust. Theor. Model. 13:319–41. doi:10.1080/13647830802632184.
  • Trunov, M. A., M. Schoenitz, and E. L. Dreizin. 2005. Ignition of aluminum powders under different experimental conditions. Propellants Explos. Pyrotech. 30:36–43. doi:10.1002/prep.200400083.
  • Zhang, Q., B. Qin, and D. C. Lin. 2010. Estimation of pressure distribution for shock wave through the bend of bend laneway. Saf. Sci. 48:1263–68. doi:10.1016/j.ssci.2010.04.003.
  • Zhao, H. Y. 1996. The theory of gas and dust explosion. Beijing, China: Beijing Institute of Technology Press.
  • Zhou, Y. H., M. S. Bi, and F. Qi. 2012. Experimental research into effects of obstacle on methane–Coal dust hybrid explosion. J. Loss Prev. Process Ind. 25 (1):127–30. doi:10.1016/j.jlp.2011.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.