101
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fractal Analysis of Fluorescence Images to Assess Robustness of Reference-surface Positioning in Flame Fronts

ORCID Icon &
Pages 1782-1797 | Received 04 Jun 2019, Accepted 08 Jan 2020, Published online: 15 Jan 2020

References

  • Ayoola, B. O., R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski. 2006. Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144 (1):1–16.
  • Battista, F., G. Troiani, and F. Picano. 2015. Fractal scaling of turbulent premixed flame fronts: Application to les. Int. J. Heat Fluid Flow 51:78–87. doi:10.1016/j.ijheatfluidflow.2014.08.006.
  • Bechtold, J. K., and M. Matalon. 2001. The dependence of the markstein length on stoichiometry. Combust. Flame 127 (1–2):1906–13. doi:10.1016/S0010-2180(01)00297-8.
  • Böckle, S., J. Kazenwadel, T. Kunzelmann, D. I. Shin, and C. Schulz. 2000. Single-shot laser-induced fluorescence imaging of formaldehyde with xef excimer excitation. Appl. Phys. B 70 (5):733–35. doi:10.1007/s003400050888.
  • Bray, K. N. C., and R. S. Cant. 1991 Some applications of kolmogorov’s turbulence research in the field of combustion. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, Vol. 434, 217–240.
  • Chakraborty, N. 2007. Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids 19 (10):5109. doi:10.1063/1.2784947.
  • Cintosun, E., G. Smallwood, and O. Gulder. 2007. Flame surface fractal characteristics in premixed turbulent combustion at medium to high turbulence intensities. 45th AIAA Aerospace Sciences Meeting and Exhibit, 1349.
  • Creta, F., R. Lamioni, P. E. Lapenna, and G. Troiani. 2016. Interplay of darrieus-landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94 (5):053102. doi:10.1103/PhysRevE.94.053102.
  • Denker, D., A. Attili, S. Luca, F. Bisetti, M. Gauding, and H. Pitsch. 2019. Dissipation element analysis of turbulent premixed jet flames. Combust. Sci. Technol. .
  • Driscoll, J. F. 2008. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34 (1):91–134. doi:10.1016/j.pecs.2007.04.002.
  • Eckbreth, A. C. 1996. Laser diagnostics for combustion temperature and species. CRC Press.
  • Falconer, K. 2003. Fractal geometry: mathematical foundations and applications. John Wiley & Sons.
  • Falconer, K. J. 1990. Fractal Geometry, Math. Found. Appl., John Wiley & Sons, Ltd., Chichester.
  • Gouldin, F., S. Hilton, and T. Lamb. 1989. Experimental evaluation of the fractal geometry of flamelets. Symposium International on Combustion, Vol. 22, 541–50. Combustion Institute.
  • Gouldin, F. C. 1987. An application of fractals to modeling premixed turbulent flames. Combust. Flame 68 (3):249–66. doi:10.1016/0010-2180(87)90003-4.
  • Gülder, Ö., G. J. Smallwood, R. Wong, D. Snelling, R. Smith, B. Deschamps, and J.-C. Sautet. 2000. Flame front surface characteristics in turbulent premixed propane/air combustion. Combust. Flame 120 (4):407–16. doi:10.1016/S0010-2180(99)00099-1.
  • Gülder, Ö. L. 2007. Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31 (1):1369–75. doi:10.1016/j.proci.2006.07.189.
  • Gülder, Ö. L., and G. J. Smallwood. 1995. Inner cutoff scale of flame surface wrinkling in turbulent premixed flames. Combust. Flame 103 (1):107–14. doi:10.1016/0010-2180(95)00073-F.
  • Hartung, G., J. Hult, R. Balachandran, M. R. Mackley, and C. F. Kaminski. 2009. Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH’. Appl. Phys. B 96 (4):843–62. doi:10.1007/s00340-009-3647-0.
  • Kalt, P. A. M., Y. C. Chen, and R. W. Bilger. 2002. Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combust. Flame 129 (4):401–15. doi:10.1016/S0010-2180(02)00354-1.
  • Kaminski, C. F., X. S. Bai, J. Hult, A. Dreizler, S. Lindenmaier, and L. Fuchs. 2000. Flame growth and wrinkling in a turbulent flow. Appl. Phys. B 71 (5):711–16. doi:10.1007/s003400000425.
  • Knikker, R., D. Veynante, and C. Meneveau. 2004. A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 16:L91. doi:10.1063/1.1780549.
  • Kohse-Höinghaus, K., and J. B. Jeffries. 2002. AppliedCombustion Diagnostics. Taylor and Francis, NewYork, 2002.
  • Kortschik, C., T. Plessing, and N. Peters. 2004. Laser optical investigation of turbulent transport of temperature ahead of the preheat zone in a premixed flame. Combust. Flame 136 (1–2):43–50. doi:10.1016/j.combustflame.2003.09.018.
  • Law, C. K. 2006. Combustion physics. Cambridge University Press.
  • Li, Z. S., B. Li, Z. W. Sun, X. S. Bai, and M. Alden. 2010. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot plif imaging of ch, oh, and ch2o in a piloted premixed jet flame. Combust. Flame 157 (6):1087–96. doi:10.1016/j.combustflame.2010.02.017.
  • Lipatnikov, A. N., and J. Chomiak. 2010. Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36 (1):1–102. doi:10.1016/j.pecs.2009.07.001.
  • Malm, H., G. Sparr, J. Hult, and C. F. Kaminski. 2000. Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy. JOSA A 17 (12):2148–56. doi:10.1364/JOSAA.17.002148.
  • Mandelbrot, B. B. 1982. The fractal geometry of nature. New York: WH freeman.
  • Meakin, P. 1998. Fractals, scaling and growth far from equilibrium. Cambridge University Press.
  • Most, D., and A. Leipertz. 2001. Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique. Appl. Opt. 40 (30):5379–87. doi:10.1364/AO.40.005379.
  • Paul, P. H., and H. N. Najm. 1998. Planar laser-induced fluorescence imaging of flame heat release rate. Symposium International On Combustion, Vol. 1, 43–50. Combustion Institute.
  • Perona, P., and J. Malik. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12 (7):629–39. doi:10.1109/34.56205.
  • Peters, N. 1997. Kinetic foundation of thermal flame theory. Adv. Combust. Sci. 173:73–91.
  • Peters, N. 1999. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384:107–32. doi:10.1017/S0022112098004212.
  • Peters, N. 2000. Turbulent combustion. Cambridge University Press.
  • Peters, N., and F. A. Williams. 1987. The asymptotic structure of stoichiometric methane-air flames. Combust. Flame 68 (2):185–207. doi:10.1016/0010-2180(87)90057-5.
  • Pfadler, S., F. Beyrau, and A. Leipertz. 2007. Flame front detection and characterization using conditioned particle image velocimetry (CPIV). Opt. Express 15:15444–56. doi:10.1.364/OE.15.015444.
  • Pfadler, S., A. Leipertz, and F. Dinkelacker. 2008. Systematic experiments on turbulent pre- mixed Bunsen flames including turbulent flux measurements. Combust. Flame 152 (4):616–31. doi:10.1016/j.combustflame.2007.11.006.
  • Poinsot, T., D. Veynante, and S. Candel. 1991. Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228 (561–606):230.
  • Shepherd, I. G., R. K. Cheng, and L. Talbot. 1992. Experimental criteria for the determination of fractal parameters of premixed turbulent flames. Exp. Fluids 13 (6):386–92. doi:10.1007/BF00223246.
  • Skiba, A. W., T. M. Wabel, C. D. Carter, S. D. Hammack, J. E. Temme, T. Lee, and J. F. Driscoll. 2017. Reaction layer visualization: A comparison of two plif techniques and advantages of khz-imaging. Proc. Combust. Inst. 36 (3):4593–601. doi:10.1016/j.proci.2016.07.033.
  • Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., Lissianski, V. V., and Qin, Z., GRI-Mech. 3.0, 1999, http://www.me.berkeley.edu/grimech/.
  • Sreenivasan, K. R., and C. Meneveau. 1986. The fractal facets of turbulence. J. Fluid Mech. 173:357–86. doi:10.1017/S0022112086001209.
  • Sreenivasan, K. R., R. Ramshankar, and C. Meneveau. 1989. Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 79–108.
  • Sweeney, M., and S. Hochgreb. 2009. Autonomous extraction of optimal flame fronts in OH planar laser-induced fluorescence images. Appl. Opt. 48 (19):3866–77. doi:10.1364/AO.48.003866.
  • Troiani, G. 2009. Effect of velocity inflow conditions on the stability of a ch4/air jet-flame. Combust. Flame 156 (2):539–42. doi:10.1016/j.combustflame.2008.11.020.
  • Troiani, G., M. Marrocco, S. Giammartini, and C. Casciola. 2009. Counter-gradient transport in the combustion of a premixed CH4/air annular jet by combined PIV/OH-LIF. Combust. Flame 156 (3):608–20. doi:10.1016/j.combustflame.2008.12.010.
  • Troiani, G., F. Picano, and C. M. Casciola. 2009. Turbulent premixed flame fronts: Fractal scaling and implications for les modeling. Adv. Turbul. XII:881–84.
  • Vagelopoulos, C., and F. Egolfopoulos. 1998. Direct experimental determination of laminar flame speeds. Symposium International On Combustion’, Vol. 1, 513–20. Combustion Institute.
  • Wabel, T. M., A. W. Skiba, and J. F. Driscoll. 2017. Turbulent burning velocity measurements: Extended to extreme levels of turbulence. Proc. Combust. Inst. 36 (2):1801–08. doi:10.1016/j.proci.2016.08.013.
  • Wabel, T. M., A. W. Skiba, and J. F. Driscoll. 2018. Evolution of turbulence through a broadened preheat zone in a premixed piloted bunsen flame from conditionally-averaged velocity measurements. Combust. Flame 188:13–27. doi:10.1016/j.combustflame.2017.09.013.
  • Wolfrum, J. 1998. Lasers in combustion: From basic theory to practical devices. Symposium International On Combustion, Vol. 1, 1–42. Combustion Institute.
  • Young, H. 1962. Statistical treatment of experimental data. New York: McGraw-Hill.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.