160
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Fractal/Wrinkling Theories for Describing Turbulent Reacting Fine Structures under MILD Combustion Regimes

&
Pages 1798-1825 | Received 15 May 2019, Accepted 10 Jan 2020, Published online: 19 Jan 2020

References

  • Ameen, M., and Ravikrishna, R. 2011. An EDC-based turbulent premixed combustion model. Combust. Theory Modell 15:607–22. doi:10.1080/13647830.2011.554576.
  • Aminian, J., Galleti, C., and Tognotti, L. 2016. Extended EDC local extiction model accounting finite-rate chemistry for MILD combustion. Fuel 165:123–33. doi:10.1016/j.fuel.2015.10.041.
  • Aminian, J., Galletti, C., Shahhosseini, S., and Tognotti, L. 2011. Key modeling issues in prediction of minor species in diluted-preheated combustion conditions. Appl. Therm. Eng 31:3287–300. doi:10.1016/j.applthermaleng.2011.06.007.
  • Aminian, J., Galletti, C., Shahhosseini, S., and Tognotti, L. 2012. Numerical Investigation of a MILD combustion burner: analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow Turbulence Combust 88:597–623. doi:10.1007/s10494-012-9386-z.
  • Bhaya, R., De, A., and Yadav, R. 2014. Large Eddy simulation of MILD combustion using PDF based turbulence-chemistry interaction models. Combustion Science and Technology 186: 1138-1165.
  • Bilger, R. 1993. Conditional moment closure for turbulent reacting flows. Phys. Fluid A 5:436–44. doi:10.1063/1.858867.
  • Briones, A. M., and Aggarwal, S. K. 2006. A numerical investigation of flame liftoff, stabilization, and blowout. Phys. Fluids 18, 043603. doi:10.1063/1.2191851.
  • Bushe, W., and Steiner, H. 1999. Conditional moment closure for large eddy simulation of non-premixed turbulent reacting. Phys. Fluids 11:1896–906. doi:10.1063/1.870052.
  • Cavaliere, A., and de Joannon, M. 2004. MILD combustion. Prog. Energy Combust. Sci 30:329–66. doi:10.1016/j.pecs.2004.02.003.
  • Chakraborty, N., and Swaminathan, N. 2011. Effects of Lewis number on scalar variance transport in premixed flames. Flow Turbulence Combust 87:261–92. doi:10.1007/s10494-010-9305-0.
  • Christo, F., and Dally, B. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142:117–29. doi:10.1016/j.combustflame.2005.03.002.
  • Coppens, F., De Ruyck, J., and Konnov, A.. 2007. Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane + air flames. Exp. Therm. Flucid Sci 31:437–44. doi:10.1016/j.expthermflusci.2006.04.012.
  • Dally, B. B., Karpetis, A. N., and Barlow, R. S. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combustion Inst 29: 1147–54.
  • De, A., and Dongre, A. 2015. Assessment of turbulence-chemistry interaction models in MILD combustion regime. Flow Turbulence Combust 94:439–78. doi:10.1007/s10494-014-9587-8.
  • De, A., Oldenhof, E., Sathiah, P., and Roekaerts, D. 2011. Numerical simulation of Delft-Jet-in-Hot-Coflow (DJHC) flame using eddy dissipation concept model for turbulent-chemistry interaction. Flow Turbulent Combust 87:537–67. doi:10.1007/s10494-011-9337-0.
  • Doan, N., Swaminathan, N., and Minamoto, Y. 2018. DNS of MILD combustion with mixture fraction variations. Combust. Flame 189:173–89. doi:10.1016/j.combustflame.2017.10.030.
  • Ertesvåg, I. 2019. Analysis of some recently proposed modifications to the Eddy Dissipation Concept (EDC). Combust. Sci. Technol. doi:10.1080/00102202.2019.1611565.
  • Ertesvåg, I., and Magnussen, B. 2000. The Eddy Dissipation Concept turbulent energy cascade model. Combust. Sci. Technol 159:213–35. doi:10.1080/00102200008935784.
  • Evans, M., Petre, P., Medwell, P., and Parente, A. 2019. Generalisation of the eddy-dissipation concept for jet flames with low turbulence and low Damkohler number. Proc. Combustion Inst37: 4497–505.
  • Farokhi, M., 2018. Numerical study of biomass combustion of a grate-firing furnace with emphasis on gas-phase combustion modeling. PhD thesis. University of Manitoba, Winnipeg.
  • Farokhi, M., and Birouk, M. 2018. A new EDC based approach for modeling turbulence/chemistry interaction of the gas-phase of biomass combustion. Fuel 220:420–36. doi:10.1016/j.fuel.2018.01.125.
  • Frisch, U. 1995. Turbulence. Cambridge University Press.
  • Giacomazzi, E., Battaglia, V., and Bruno, C. 2004. The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES. Combust. Flame 138:320–35. doi:10.1016/j.combustflame.2004.06.004.
  • Giacomazzi, E., Bruno, C., and Favini, B. 1999. Fractal modelling of turbulent mixing. Combust. Theory Modell 3:637–55. doi:10.1088/1364-7830/3/4/303.
  • Giacomazzi, E., Bruno, C., and Favini, B. 2000. Fractal modelling of turbulent combustion. Combust. Theory Modell 4:391–412. doi:10.1088/1364-7830/4/4/302.
  • Gordon, R. L. 2008. A numerical and experimental investigation of autoignition. PhD thesis. University of Sydney.
  • Gouldin, F. C., and Bray, K. 1989. Chemical closure model for fractal flamelets. Combust. Flame 77:241–59. doi:10.1016/0010-2180(89)90132-6.
  • Gouldin, F. C. 1987. An application of fractals to modeling premixed turbulent flames. Combust. Flame 68:249–66. doi:10.1016/0010-2180(87)90003-4.
  • Gran, I., and Magnussen, B. 1996. A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol 119:191-217. doi:10.1080/00102209608951999.
  • Gülder, Ö. 1991. Turbulent premixed combustion modelling using fractal geometry. Proc.Combustion Inst 23:835-842.
  • Gülder, Ö., 2007. Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc.. Combustion Inst 31: 1369–75.
  • Gülder, Ö., and Smallwood, G. J. 2001. Do turbulent premixed flame fronts in spark ignition engines behave like passive surfaces? SAE Trans. J. Engines 109:1823–32.
  • Gülder, Ö. L., Smallwood, G. J., Wong, R., Snelling, D. R., Smith, R, Deschamps, B. M., and Sautet, J. -C. Flame front surface characteristics in turbulent premixed propane/air combustion. Combust. Flame 120:407–16. doi:10.1016/S0010-2180(99)00099-1.
  • Hartung, G.,Hult, J., Kaminski, C. F., Rogerson, J. W.,and Swaminathan, N. Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20:035110. doi:10.1063/1.2896285.
  • Hu, W., Hua, Z., Zhuyin, R., and Chung, K. L. 2019. Transported PDF simulation of turbulent CH4/H2 flames under MILD conditions with particle-level sensitivity analysis. Proc. Combustion Inst. 37: 4487-4495.
  • Huang, J., and Bushe, W. 2007. Simulation of an igniting methane jet using conditional source-term estimation with a trajectory generated low-dimensional manifold. Combust. Theory Modell 11:977–1008. doi:10.1080/13647830701324289.
  • Ihme, M., Zhang, J., He, G., and Dally, B. 2012. Large-Eddy simulation of a jet-in-hot-coflow burner operating in the oxygen-diluted combustion regime. Flow Turbulence Combust 89:449–64. doi:10.1007/s10494-012-9399-7.
  • Kazakov, A., and Frenklach, M. n.d. DRM-22 chemical mechanism. [Online]. http://www.me.berkeley.edu/drm/
  • Keppeler, R., Tangermann, E., Allaudin, U., and Pfitzner, M.. 2014. LES of low to high turbulent combustion in an elevated pressure environment. Flow Turbulence Combust 92:767–802. doi:10.1007/s10494-013-9525-1.
  • Kim, S., Huh, K., and Dally, D. 2005. Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow. Proc. Combustion Inst 30:751–57. doi:10.1016/j.proci.2004.08.161.
  • Labahn, J. 2016. Investigation of conditional source-term estimation approach to modelling MILD combustion. PhD thesis. University of Waterloo.
  • Labahn, J., and Devaud, C. 2016. Large Eddy Simulations (LES) including Conditional Source-term Estimation (CSE) applied to two Delft-Jet-in-Hot-Coflow (DJHC) flames. Combust. Flame 164:68–84. doi:10.1016/j.combustflame.2015.11.002.
  • Lewandowski, M., and Ertesvag, I. S. 2018. Analysis of the Eddy Dissipation Concept formulation for MILD combustion modelling. Fuel 224:687–700. doi:10.1016/j.fuel.2018.03.110.
  • Li, Z., Cuoci, A., Sadiki, A., and Parente, A. 2017. Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry. Energy 139:555–70. doi:10.1016/j.energy.2017.07.132.
  • Lilleberg, B., Christ, D., Ertesvåg, I. S., Rian, K. E., and Kneer, R.. 2013. Numerical simulation with an extinction database for use with the Eddy Dissipation Concept for turbulent combustion. Flow Turbulence Combust 91:319–46. doi:10.1007/s10494-013-9463-y.
  • Ma, T., Sten, O., Chakraborty, N., and Kempf, A. 2013. A posteriori testing of algebraic flame surface density models for LES. Combust. Theory Modell 17:431–82. doi:10.1080/13647830.2013.779388.
  • Magnussen, B. 2005. The Eddy dissipation concept a bridge between science and technology, ECCOMAS Thematic Conference on Computational Combustion, Lisbon, Portugal. June 21-24
  • Magnussen, B. F. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. 19th Aerospace Scienes Meeting, St. Louis, USA, January 12-15.
  • Mardani, A. 2017. Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2. Fuel 191:114–29. doi:10.1016/j.fuel.2016.11.056.
  • Mardani, A., Tabejamaat, S., and Ghamari, M. 2010. Numerical study of influence of molecular diffusion in the Mild combustion regime. Combust. Theory Model 14:747–74. doi:10.1080/13647830.2010.512959.
  • Minamoto, Y., and Swaminathan, N. 2014. Scalar gradient behaviour in MILD combustion. Combust. Flame 161:1063–75. doi:10.1016/j.combustflame.2013.10.005.
  • Modest, M. F. 2003. Radiative heat transfer. New york: Academic press.
  • Oberlack, M., Arlitt, R., and Peters, P. 2000. On stochastic Damkohler number variations in a homogeneous flow reactor. Combust. Theory Modell 4:495–509. doi:10.1088/1364-7830/4/4/307.
  • Parente, A., Malik, M. R., Contino, Cuoci, A., and Dally, B.B. 2016. Extension of the eddy dissipation concept for turbulent/chemistry interaction to MILD combusiton. Fuel 163:98–111. doi:10.1016/j.fuel.2015.09.020.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci 10:319–39. doi:10.1016/0360-1285(84)90114-X.
  • Pope, S. 1997. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model 1:41–63. doi:10.1080/713665229.
  • Salehi, M., and Bushe, W. 2010. Presumed PDF modeling for RANS simulation of turbulent premixed flames. Combust. Theory Modell 14:381–403. doi:10.1080/13647830.2010.489957.
  • Salehi, M., Bushe, W., and Daun, K. 2012. Application of the conditional source-term estimation model for turbulence-chemistry interactions in a remixed flame. Combust. Theory Modell 16:301–20.
  • Salehi, M. M., 2012. Numerical simulation of turbulent premixed flames with conditional source-term estimation. PhD thesis. The University of British Columbia.
  • Selçuk, N., and Kayakol, N. 1997. Evaluation of discrete ordinates method for radiative transfer in rectangular furnaces. Int. J. Heat Mass Transfer 40:213–22.
  • Vervisch, L., Hauguel, R., Domingo, P., and Rullaud, M. 2004. Three facets of turbulent combustion modelling: DNS of premixed v-flame, LES of lifted non-premixed flame and RANS of jet flame. J. Turbul 5:1–36. doi:10.1088/1468-5248/5/1/004.
  • Veynante, D., and Vervisch, L. 2002. Turbulent combustion modeling. Prog. Energy Combust. Sci 28:193–266. doi:10.1016/S0360-1285(01)00017-X.
  • Yuen, F. T. C., 2009. Experimental investigation of the dynamics and structure of lean-premixed turbulent combustion. PhD thesis, University of Toronto.
  • Zahirovic, S., Scharler, R., Kilpinen, P., and Obernberger, I. 2010. Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combust. Theory Modell 15:61–87. doi:10.1080/13647830.2010.524312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.