459
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Investigating Soot Parameters in an Ethane/Air Counterflow Diffusion Flame at Elevated Pressures

ORCID Icon &
Pages 1827-1842 | Received 07 Sep 2019, Accepted 10 Jan 2020, Published online: 17 Jan 2020

References

  • Amin, H. M. F., A. Bennett, and W. L. Roberts. 2019. Determining fractal properties of soot aggregates and primary particle size distribution in counterflow flames up to 10 atm. Proc. Combust. Inst. 37:1161–68. doi:10.1016/j.proci.2018.07.057.
  • Amin, H. M. F., and W. L. Roberts. 2017. Soot measurements by two angle scattering and extinction in an N 2-diluted ethylene/air counterflow diffusion flame from 2 to 5atm. Proc. Combust. Inst. 36:861–69. doi:10.1016/j.proci.2016.06.044.
  • Amin, H. M. F., and W. L. Roberts. 2019. An experimental apparatus to measure soot morphology at high pressures using multi-angle light scattering. Meas. Sci. And Technol. 30:075902. doi:10.1088/1361-6501/ab1c3f.
  • Bennett, A., H. M. F. Amin, E. Cenker, and W. L. Roberts. 2018. Measurements of pressure effects on PAH distribution and 2D soot volume fraction diagnostics in a laminar non-premixed coflow flame. Energy Fuels 32:10974–83. doi:10.1021/acs.energyfuels.8b02179.
  • Broday, D. M., and R. Rosenzweig. 2011. Deposition of fractal-like soot aggregates in the human respiratory tract. J. Aerosol. Sci. 42:372–86. doi:10.1016/j.jaerosci.2011.03.001.
  • CorteS, D., J. Morán, F. Liu, F. Escudero, J.-L. Consalvi, and A. Fuentes. 2018. Effect of fuels and oxygen indices on the morphology of soot generated in laminar coflow diffusion flames. Energy Fuels 32:11802–13. doi:10.1021/acs.energyfuels.8b01301.
  • Dasch, C. J. 1992. One-dimensional tomography: A comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31:1146–52. doi:10.1364/AO.31.001146.
  • De Iuliis, S., F. Cignoli, S. Benecchi, and G. Zizak. 1998a. Determination of soot parameters by a two-angle scattering–Extinction technique in an ethylene diffusion flame. Appl. Opt. 37:7865–74. doi:10.1364/AO.37.007865.
  • De Iuliis, S., F. Cignoli, S. Benecchi, and G. Zizak. 1998b. Investigation of the similarity of soot parameters in ethylene diffusion flames with different heights by extinction/scattering technique. Proc. Combust. Inst. 27:1549–55. doi:10.1016/S0082-0784(98)80563-8.
  • De Iuliis, S., S. Maffi, F. Cignoli, and G. Zizak. 2011. Three-angle scattering/extinction versus TEM measurements on soot in premixed ethylene/air flame. Appl. Phys. B 102:891–903. doi:10.1007/s00340-010-4344-8.
  • Fang, T. C., C. M. Megaridis, W. A. Sowa, and G. S. Samuelsen. 1998. Soot morphology in a liquid-fueled, swirl-stabilized combustor. Combust. Flame 112:312–28. doi:10.1016/S0010-2180(97)00109-0.
  • Ferraro, G., E. Fratini, R. Rausa, P. Fiaschi, and P. Baglioni. 2016. Multiscale characterization of some commercial carbon blacks and diesel engine soot. Energy Fuels 30:9859–66. doi:10.1021/acs.energyfuels.6b01740.
  • Figura, L., and A. Gomez. 2014. Structure of incipiently sooting ethylene–Nitrogen counterflow diffusion flames at high pressures. Combust. Flame 161:1587–603. doi:10.1016/j.combustflame.2013.11.023.
  • Figura, L., F. Carbone, and A. Gomez. 2015. Challenges and artifacts of probing high-pressure counterflow laminar diffusion flames. Proc. Combust. Inst. 35:1871–78. doi:10.1016/j.proci.2014.05.028.
  • Gigone, B., A. E. Karataş, and Ö. L. Gülder. 2019. Soot aggregate morphology in coflow laminar ethylene diffusion flames at elevated pressures. Proc. Combust. Inst. 37:841–48. doi:10.1016/j.proci.2018.06.103.
  • Hofmann, M., W. G. Bessler, C. Schulz, and H. Jander. 2003. Laser-induced incandescence for soot diagnostics at high pressures. Appl. Opt. 42:2052–62. doi:10.1364/AO.42.002052.
  • Hu, B., B. Yang, and U. O. Koylu. 2003. Soot measurements at the axis of an ethylene/air non-premixed turbulent jet flame. Combust. Flame 134:93–106. doi:10.1016/S0010-2180(03)00085-3.
  • Joo, H. I., and Ö. L. Gülder. 2010. Soot formation and temperature structure in small methane–Oxygen diffusion flames at subcritical and supercritical pressures. Combust. Flame 157:1194–201. doi:10.1016/j.combustflame.2009.11.003.
  • Joo, P. H., B. Gigone, E. A. Griffin, M. Christensen, and Ö. L. Gülder. 2018. Soot primary particle size dependence on combustion pressure in laminar ethylene diffusion flames. Fuel 220:464–70. doi:10.1016/j.fuel.2018.02.025.
  • Kennedy, I. M. 2007. The health effects of combustion-generated aerosols. Proc. Combust. Inst. 31:2757–70. doi:10.1016/j.proci.2006.08.116.
  • Koylu, U. O. 1997. Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity. Combust. Flame 109:488–500. doi:10.1016/S0010-2180(96)00179-4.
  • Koylu, U. O., Y. Xing, and D. E. Rosner. 1995. Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images. Langmuir 11:4848–54. doi:10.1021/la00012a043.
  • Krishnan, S. S., K.-C. Lin, and G. M. Faeth. 2000. Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames. J. Heat Transfer 122:517–24. doi:10.1115/1.1288025.
  • Mandatori, P. M., and Ö. L. Gülder. 2011. Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3 MPa. Proc. Combust. Inst. 33:577–84. doi:10.1016/j.proci.2010.06.004.
  • Mei, J., M. Wang, D. Hou, Q. Tang, and X. You. 2018. Comparative study on nascent soot formation characteristics in laminar premixed acetylene, ethylene, and ethane Flames. Energy Fuels 32:11683–93. doi:10.1021/acs.energyfuels.8b02852.
  • Migliorini, F., K. A. Thomson, and G. J. Smallwood. 2011. Investigation of optical properties of aging soot. Appl. Phys. B 104:273–83. doi:10.1007/s00340-011-4396-4.
  • Pope Iii, C. A., and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 56:709–42. doi:10.1080/10473289.2006.10464485.
  • Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nat Geosci 1:221. doi:10.1038/ngeo156.
  • Sorensen, C. M. 2001. Light scattering by fractal aggregates: A review. Aerosol Sci. Technol. 35:648–87. doi:10.1080/02786820117868.
  • Sorensen, C. M., J. Cai, and N. Lu. 1992. Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames. Appl. Opt. 31:6547–57. doi:10.1364/AO.31.006547.
  • Steinmetz, S. A., T. Fang, and W. L. Roberts. 2016. Soot particle size measurements in ethylene diffusion flames at elevated pressures. Combust. Flame 169:85–93. doi:10.1016/j.combustflame.2016.02.034.
  • Sung, C. J., B. Li, H. Wang, and C. K. Law. 1998. Structure and sooting limits in counterflow methane/air and propane/air diffusion flames from 1 to 5 atmospheres. Proc. Combust. Inst. 27:1523–29. doi:10.1016/S0082-0784(98)80560-2.
  • Thomson, K. A., D. R. Snelling, G. J. Smallwood, and F. Liu. 2006. Laser induced incandescence measurements of soot volume fraction and effective particle size in a laminar co-annular non-premixed methane/air flame at pressures between 0.5–4.0 MPa. Appl. Phys. B 83:469–75. doi:10.1007/s00340-006-2198-x.
  • Thomson, K. A., M. R. Johnson, D. R. Snelling, and G. J. Smallwood. 2008. Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements. Appl. Opt. 47:694–703. doi:10.1364/AO.47.000694.
  • Thomson, K. A., O. L. Gulder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling. 2005. Soot concentration and temperature measurements in co-annular, nonpremixed CH/air laminar flames at pressures up to 4 MPa. Combust. Flame 140:222–32. doi:10.1016/j.combustflame.2004.11.012.
  • Vargas, A. M., and Ö. L. Gülder. 2016. Pressure dependence of primary soot particle size determined using thermophoretic sampling in laminar methane-air diffusion flames. Proc. Combust. Inst. 36:975–84. doi:10.1016/j.proci.2016.05.023.
  • Wang, Y., and S. H. Chung. 2019. Soot formation in laminar counterflow flames. Prog. Energy Combust Sci. 74:152–238. doi:10.1016/j.pecs.2019.05.003.
  • Xue, X., P. Singh, and C.-J. Sung. 2018. Soot formation in counterflow non-premixed ethylene flames at elevated pressures. Combust. Flame 195:253–66. doi:10.1016/j.combustflame.2018.04.005.
  • Yang, B., and U. O. Koylu. 2005a. Soot processes in a strongly radiating turbulent flame from laser scattering/extinction experiments. J. Quant. Spectrosc. Radiat. Transfer 93:289–99. doi:10.1016/j.jqsrt.2004.08.026.
  • Yang, B., and U. O. Koylu. 2005b. Detailed soot field in a turbulent non-premixed ethylene/air flame from laser scattering and extinction experiments. Combust. Flame 141:55–65. doi:10.1016/j.combustflame.2004.12.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.