636
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation of Flame Characteristics of H2/CO/CH4/CO2 Synthetic Gas Mixtures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1843-1865 | Received 22 Aug 2019, Accepted 10 Jan 2020, Published online: 17 Jan 2020

References

  • Allison, P. M., J. F. Driscoll, and M. Ihme. 2013. Acoustic characterization of a partially-premixed gas turbine model combustor: Syngas and hydrocarbon fuel comparisons. Proc. Combust. Inst. 34:3145–53. doi:10.1016/j.proci.2012.06.157.
  • ANSYS CHEMKIN-PRO. 2018. Reaction design. ANSYS. Inc., San Diego.
  • Bellows, B. D., Y. Neumeier, and T. Lieuwen. 2006. Forced response of a swirling, premixed flame to flow disturbances. J. Propul. Power. 22:1075–84. doi:10.2514/1.17426.
  • Cam, O., H. Yilmaz, and I. Yilmaz. 2018a Dynamic and static flame behavior of premixed H2/CO/CNG/CO2-air mixtures under externally modified acoustic conditions. 14th International Combustion Symposium (INCOS2018), Karabuk, Turkey. 117–23, April 25-27.
  • Cam, O., H. Yilmaz, and I. Yilmaz. 2018b. Experimental investigation of premixed H2/CO/CNG/CO2 blending syngas flames: Effect of swirl number and equivalence ratio. 14th International Combustion Symposium (INCOS2018), Karabuk, Turkey, 61–67, April 25-27.
  • Corrêa, P. S. P., J. Zhang, E. E. S. Lora, R. V. Andrade, L. R. De mello E pinto, and A. Ratner. 2019. Experimental study on applying biomass-derived syngas in a microturbine. Appl. Thermal Eng. 146:328–37. doi:10.1016/j.applthermaleng.2018.09.123.
  • Dam, B., N. Love, and A. Choudhuri. 2011. Flashback propensity of syngas fuels. Fuel 90:618–25. doi:10.1016/j.fuel.2010.10.021.
  • Dong, C., Q. Zhou, Q. Zhao, Y. Zhang, T. Xu, and S. Hui. 2009. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel 88:1858–63. doi:10.1016/j.fuel.2009.04.024.
  • Emadi, M., D. Karkow, T. Salameh, A. Gohil, and A. Ratner. 2012. Flame structure changes resulting from hydrogen-enrichment and pressurization for low-swirl premixed methane–air flames. Int. J. Hydrogen. Energy 37:10397–404. doi:10.1016/j.ijhydene.2012.04.017.
  • Emadi, M., K. Kaufman, M. W. Burkhalter, T. Salameh, T. Gentry, and A. Ratner. 2015. Examination of thermo-acoustic instability in a low swirl burner. Int. J. Hydrogen. Energy 40:13594–603. doi:10.1016/j.ijhydene.2015.08.016.
  • Ennetta, R., M. Alaya, and R.Said. 2017. Numerical study of laminar flame velocity of hydrogen-enriched methane flames using several detailed reaction mechanisms. Arabian Journal for Science and Engineering, 42:1707–13. doi:10.1080/02713683.2017.1358373.
  • García-Armingol, T., and J. Ballester. 2015. Operational issues in premixed combustion of hydrogen-enriched and syngas fuels. Int. J. Hydrogen. Energy 40:1229–43. doi:10.1016/j.ijhydene.2014.11.042.
  • Glassman, I., R. A. Yetter, and N. G. Glumac. 2014. Combustion. San Diego: Academic press.
  • Ilbaş, M., and İ. Yilmaz. 2012. Experimental analysis of the effects of hydrogen addition on methane combustion. International Journal of Energy Research, 36:643–47. doi:10.1002/er.1822
  • Kang, D., F. Culick, and A. Ratner. 2007. Combustion dynamics of a low-swirl combustor. Combust. Flame 151:412–25. doi:10.1016/j.combustflame.2007.07.017.
  • Kaufman, K., M. Emadi, and A. Ratner. 2013. Effect of hydrogen addition to methane fuel in a low swirl burner. Park City, Utah: 8th US National Combustion Meeting, University of Utah.
  • Lang, W., T. Poinsot, and S. Candel. 1987. Active control of combustion instability. Combust. Flame 70:281–89. doi:10.1016/0010-2180(87)90109-X.
  • Lieuwen, T., V. Mcdonell, D. Santavicca, and T. Sattelmayer. 2008. Burner development and operability issues associated with steady flowing syngas fired combustors. Combust. Sci. Technol. 180:1169–92. doi:10.1080/00102200801963375.
  • Malushte, M., and S. Kumar. 2019. Flame dynamics in a stepped micro-combustor for non-adiabatic wall conditions. Thermal. Sci. Eng. Prog. 13:100394. doi:10.1016/j.tsep.2019.100394.
  • Mcdonell, V. 2006. Key combustion issues associated with syngas and high-hydrogen fuels. In The gas turbine handbook, ed. R. A. Dennis, 195–196. Oxford, UK: Gulf Professional Publishing.
  • Mishra, D. 2014. Experimental combustion: An introduction. New York: Crc Press.
  • Noble, D. R., Q. Zhang, A. Shareef, J. Tootle, A. Meyers, and T. Lieuwen. 2006. Syngas mixture composition effects upon flashback and blowout. ASME turbo expo 2006: Power for land, sea, and air, 2006 Barcelona, Spain. Combust. Fuels Educ. 1:357–68.
  • Park, J., and M. C. Lee. 2016. Combustion instability characteristics of H2/CO/CH4 syngases and synthetic natural gases in a partially-premixed gas turbine combustor: Part I—Frequency and mode analysis. Int. J. Hydrogen. Energy. 41:7484–93. doi:10.1016/j.ijhydene.2016.02.047.
  • Peracchio, A. A., and W. M. Proscia. 1998. Nonlinear heat-release/acoustic model for thermoacoustic instability in lean premixed combustors. Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations. Stockholm, Sweden. June 2–5, 1998. V003T06A022. ASME. doi:10.1115/98-GT-269.
  • Richard, P. B., and D. Klaus. 2017. Syngas use in internal combustion engines - A review. Adv. Res. 10:1–8.
  • Samiran, N. A., J.-H. Ng, M. N. Mohd Jaafar, A. Medinavalera, and C. T. Chong. 2016. H2-rich syngas strategy to reduce NOx and CO emissions and improve stability limits under premixed swirl combustion mode. Int. J. Hydrogen. Energy 41:19243–55. doi:10.1016/j.ijhydene.2016.08.095.
  • Smith, G., D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song, W. Gardiner, et al. 2000. GRI-Mech 3.0 mechanism [Online]. Accessed 2019. Available: http://combustion.berkeley.edu/gri-mech/version30/text30.html.
  • Todd, D. M. 2000. Gas turbine improvements enhance IGCC viability. Gasification Technologies Conference, San Francisco, CA.
  • Tuncer, O. 2006. Active control of spray combustion. PhD, Louisiana State University.
  • von Helmholtz, H. 1912. On the sensations of tone as a physiological basis for the theory of music. Green: Longmans.
  • Wan, J., and H. Zhao. 2017. Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels. Energy 139:366–79. doi:10.1016/j.energy.2017.08.002.
  • Wark, C., K. Eickmann, and C. Richards. 2000. The structure of an acoustically forced, reacting two-phase jet. Combust. Flame 120:539–48. doi:10.1016/S0010-2180(99)00111-X.
  • Watanabe, H., S. J. Shanbhogue, S. Taamallah, N. W. Chakroun, and A. F. Ghoniem. 2016. The structure of swirl-stabilized turbulent premixed CH4/air and CH4/O2/CO2 flames and mechanisms of intense burning of oxy-flames. Combust. Flame 174:111–19. doi:10.1016/j.combustflame.2016.09.015.
  • Weigand, P., W. Meier, X. R. Duan, W. Stricker, and M. Aigner. 2006. Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions. Combust. Flame 144:205–24. doi:10.1016/j.combustflame.2005.07.010.
  • Whitty, K. J., H. R. Zhang, and E. G. Eddings. 2008. Emissions from syngas combustion. Combust. Sci. Technol. 180:1117–36. doi:10.1080/00102200801963326.
  • Yilmaz, H. 2018. Experimental investigation of combustion characteristics of synthetic gases. PhD, Erciyes University.
  • Yilmaz, H., and I. Yilmaz. 2019a. Combustion and emission characteristics of premixed CNG/H2/CO/CO2 blending synthetic gas flames in a combustor with variable geometric swirl number. Energy 172:117–33. doi:10.1016/j.energy.2019.01.108.
  • Yilmaz, H., and I. Yilmaz. 2019b. Effects of synthetic gas constituents on combustion and emission behavior of premixed H2/CO/CO2/CNG mixture flames. J. Energy Inst. 92:1091–106. doi:10.1016/j.joei.2018.06.008.
  • Yilmaz, I., A. Ratner, M. Ilbas, and Y. Huang. 2010. Experimental investigation of thermoacoustic coupling using blended hydrogen–methane fuels in a low swirl burner. Int. J. Hydrogen. Energy 35:329–36. doi:10.1016/j.ijhydene.2009.10.018.
  • Yilmaz, I., H. Yilmaz, and O. CAM. 2018. An experimental study on premixed CNG/H2/CO2 mixture flames. Open Eng. 8:32. doi:10.1515/eng-2018-0003.
  • Zhan, Z., W. Kobsiriphat, J. R. Wilson, M. Pillai, I. Kim, and S. A. Barnett. 2009. Syngas production by coelectrolysis of CO2/H2O: The basis for a renewable energy cycle. Energy Fuels 23:3089–96. doi:10.1021/ef900111f.
  • Zhang, J., and A. Ratner. 2017. Experimental study of the global and local flame responses to acoustic perturbation. Journal of Propulsion and Power, 33:479–89.
  • Zhang, J., and A. Ratner. 2019. Experimental study on the excitation of thermoacoustic instability of hydrogen-methane/air premixed flames under atmospheric and elevated pressure conditions. Int. J. Hydrogen. Energy 44:21324–35. doi:10.1016/j.ijhydene.2019.06.142.
  • Zhang, Q., D. R. Noble, and T. Lieuwen. 2007. Characterization of fuel composition effects in H2∕CO∕CH4 mixtures upon lean blowout. J. Eng. Gas Turbines Power 129:688–94. doi:10.1115/1.2718566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.