133
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Flame Propagation and Combustion State Transition in a Sub-millimeter Constant-volume Space

, ORCID Icon, , , &
Pages 1866-1884 | Received 24 Sep 2019, Accepted 12 Jan 2020, Published online: 17 Jan 2020

References

  • Bonhomme, A., L. Selle, and T. Poinsot. 2013. Curvature and confinement effects for flame speed measurements in laminar spherical and cylindrical flames. Combust. Flame 160:1208–14. doi:10.1016/j.combustflame.2013.02.003.
  • Bradley, D., R. Hicks, M. Lawes, C. Sheppard, and R. Woolley. 1998. The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb. Combust. Flame 115:126–44. doi:10.1016/S0010-2180(97)00349-0.
  • Clavin, P. 2016. Combustion waves and fronts in flows (flames, shocks, detonations, ablation fronts and explosion of stars), Cambridge: Cambridge University Press. pp. 106–109, 50.
  • Dahm, W. J., J. Mijit, R. Mayor, G. Qiao, A. Benajmin, Y. Gu, Y. Lei, M. Papke, and S. Wu. 2002. Micro internal combustion swing engine (MICSE) for portable power generation systems.
  • Daou, J., and M. Matalon. 2002. Influence of conductive heat-losses on the propagation of premixed flames in channels. Combust. Flame 128:321–39. doi:10.1016/S0010-2180(01)00362-5.
  • Darrieus, G. 1938. Propagation d’un front de flamme. La Technique Moderne 30:18.
  • Dorofeev, S. B. 2011. Flame acceleration and explosion safety applications. Proc. Combust. Inst. 33:2161–75. doi:10.1016/j.proci.2010.09.008.
  • Dunn-Rankin, D., E. M. Leal, and D. C. Walther. 2005. Personal power systems. Prog. Energy Combust. Sci. 31:422–65. doi:10.1016/j.pecs.2005.04.001.
  • Epstein, A., S. Senturia, O. Al-Midani, G. Anathasuresh, A. Ayon, K. Breuer, K. Chen, P. Ehrich, E. Esteve, and L. Frechette. 1997. Micro-Heat Engines, Gas Turbines and Rocket Engines - The MIT Microengine project. AIAA. 1773.
  • Fernandez-Pello, A. C. 2002. Micropower generation using combustion: Issues and approaches. Proc. Combust. Inst. 29:883–99. doi:10.1016/S1540-7489(02)80113-4.
  • Fu, K., A. J. Knobloch, F. C. Martinez, D. C. Walther, C. Fernandez-Pello, A. P. Pisano, and D. Liepmann. 2001. Design and fabrication of a silicon-based MEMS rotary engine. Proceedings of ASME International Mechanical Engineering Congress and Exposition, NewYork, NY, MEMS-23925.
  • Gamezo, V. N., and E. S. Oran. 2006. Flame acceleration in narrow channels: Applications for micropropulsion in low-gravity environments. AIAA J. 44:329. doi:10.2514/1.16446.
  • He, J., W. Fan, P. Ma, T. Yan, Q. He, and L. Sun. 2016. Experimental research on detonation impulse measurements in micro-scale smooth tubes using a ballistic pendulum. J. Propul. Technol. 37:393–400.
  • Huang, Z., Y. Zhang, K. Zeng, B. Liu, Q. Wang, and D. Jiang. 2006. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame 146:302–11. doi:10.1016/j.combustflame.2006.03.003.
  • Huo, J., H. Su, L. Jiang, D. Zhao, and X. Wang. 2019. Numerical study on the propagation of premixed flames in confined narrow disc-shape chambers. Combust. Sci. Technol. 191:1380–404.
  • Jang, H. J., G. M. Jang, and N. I. Kim. 2019. Unsteady propagation of premixed methane/propane flames in a mesoscale disk burner of variable-gaps. Proc. Combust. Inst. 37:1861–68. doi:10.1016/j.proci.2018.06.112.
  • Jiang, L., H. Su, J. Huo, X. Li, H. Yang, and D. Zhao. 2019. Experimental study on propane/air flame propagation characteristics in a disc-like gap chamber. Combust. Sci. Technol. 191:1168–83.
  • Ju, Y., and K. Maruta. 2011. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci. 37:669–715. doi:10.1016/j.pecs.2011.03.001.
  • Kaisare, N. S., and D. G. Vlachos. 2012. A review on microcombustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci. 38:321–59. doi:10.1016/j.pecs.2012.01.001.
  • Kurdyumov, V. N., and M. Matalon. 2017. Critical conditions for flame acceleration in long adiabatic channels closed at their ignition end. Proc. Combust. Inst. 36:1549–57. doi:10.1016/j.proci.2016.06.024.
  • Kuznetsov, M., G. Ciccarelli, S. Dorofeev, V. Alekseev, Y. Yankin, and T. H. Kim. 2002. DDT in methane-air mixtures. Shock Waves 12:215–20. doi:10.1007/s00193-002-0155-0.
  • Landau, L. 1944. On the theory of slow combustion. Acta Physicochim (USSR) 19:77–85.
  • Li, J., P. Zhang, L. Yuan, Z. Pan, and Y. Zhu. 2017. Flame propagation and detonation initiation distance of ethylene/oxygen in narrow gap. Appl. Therm. Eng. 110:1274–82. doi:10.1016/j.applthermaleng.2016.09.037.
  • Liao, S., D. Jiang, J. Gao, and Z. Huang. 2004. Measurements of Markstein numbers and laminar burning velocities for natural gas− air mixtures. Energy Fuels 18:316–26. doi:10.1021/ef034036z.
  • Maruta, K. 2011. Micro and mesoscale combustion. Proc. Combust. Inst. 33:125–50. doi:10.1016/j.proci.2010.09.005.
  • Nagai, K., T. Okabe, K. Kim, T. Yoshihashi, T. Obara, and S. Ohyagi. 2009. A study on DDT processes in a narrow channel. Shock Waves. Springer, Berlin, Heidelberg.
  • Pan, Z., K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi. 2017. An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps. Exp. Therm. Fluid Sci. 88:354–60. doi:10.1016/j.expthermflusci.2017.06.015.
  • Pan, Z., K. Chen, J. Qi, P. Zhang, Y. Zhu, J. Pan, and M. Gui. 2019. The propagation characteristics of curved detonation wave: Experiments in helical channels. Proc. Combust. Inst. 37:3585–92. doi:10.1016/j.proci.2018.06.167.
  • Ponizy, B., A. Claverie, and B. Veyssière. 2014. Tulip flame - the mechanism of flame front inversion. Combust. Flame 161:3051–62. doi:10.1016/j.combustflame.2014.06.001.
  • Shen, X., X. He, and J. Sun. 2015. A comparative study on premixed hydrogen–air and propane–air flame propagations with tulip distortion in a closed duct. Fuel 161:248–53. doi:10.1016/j.fuel.2015.08.043.
  • Sivashinsky, G. 1977. Diffusional-thermal theory of cellular flames. Combust. Sci. Technol. 15:137–45. doi:10.1080/00102207708946779.
  • Walther, D. C., and J. Ahn. 2011. Advances and challenges in the development of power-generation systems at small scales. Prog. Energy Combust. Sci. 37:583–610. doi:10.1016/j.pecs.2010.12.002.
  • Wu, M.-H., and C.-Y. Wang. 2011. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures. Proc. Combust. Inst. 33:2287–93. doi:10.1016/j.proci.2010.07.081.
  • Wu, M.-H., M. P. Burke, S. F. Son, and R. A. Yetter. 2007. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc. Combust. Inst. 31:2429–36. doi:10.1016/j.proci.2006.08.098.
  • Wu, M.-H., and T.-H. Lu. 2012. Development of a chemical microthruster based on pulsed detonation. J. Micromech. Microeng. 22:105040. doi:10.1088/0960-1317/22/10/105040.
  • Wu, M.-H., and W.-C. Kuo. 2012. Transition to detonation of an expanding flame ring in a sub-millimeter gap. Combust. Flame 159:1366–68. doi:10.1016/j.combustflame.2011.09.008.
  • Wu, M.-H., and W.-C. Kuo. 2013. Accelerative expansion and DDT of stoichiometric ethylene/oxygen flame rings in micro-gaps. Proc. Combust. Inst. 34:2017–24. doi:10.1016/j.proci.2012.07.008.
  • Xiao, H., J. Sun, and P. Chen. 2014. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber. J. Hazard. Mater. 268:132–39. doi:10.1016/j.jhazmat.2013.12.060.
  • Xiao, H., Q. Wang, X. Shen, S. Guo, and J. Sun. 2013b. An experimental study of distorted tulip flame formation in a closed duct. Combust. Flame 160:1725–28. doi:10.1016/j.combustflame.2013.03.011.
  • Xiao, H., W. An, Q. Duan, and J. Sun. 2013a. Dynamics of premixed hydrogen/air flame in a closed combustion vessel. Int. J. Hydrogen Energy 38:12856–64. doi:10.1016/j.ijhydene.2013.07.082.
  • Yang, H., Y. Feng, X. Wang, L. Jiang, D. Zhao, N. Hayashi, and H. Yamashita. 2013. OH-PLIF investigation of wall effects on the flame quenching in a slit burner. Proc. Combust. Inst. 34:3379–86. doi:10.1016/j.proci.2012.07.038.
  • Yang, J., F. M. S. Mossa, H. W. Huang, Q. Wang, R. Woolley, and Y. Zhang. 2015. Oscillating flames in open tubes. Proc. Combust. Inst. 35:2075–82. doi:10.1016/j.proci.2014.07.052.
  • Zhang, K., S. Chou, and S. S. Ang. 2004. MEMS-based solid propellant microthruster design, simulation, fabrication, and testing. J. Microelectromech. Syst. 13:165–75. doi:10.1109/JMEMS.2004.825309.
  • Zhou, M., and C. P. Garner. 1996. Direct measurements of burning velocity of propane-air using particle image velocimetry. Combust. Flame 106:363–67. doi:10.1016/0010-2180(96)00002-8.
  • Zhu, Y., Z. Pan, P. Zhang, and J. Pan. 2017. Stable detonation characteristics of premixed C2H4/O2 gas in narrow gaps. Exp. Fluids 58:112. doi:10.1007/s00348-017-2399-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.