365
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Structural Transformations of Coal at Low Temperature Oxidation via In-situ FTIR

, &
Pages 1885-1902 | Received 27 Sep 2019, Accepted 12 Jan 2020, Published online: 21 Jan 2020

References

  • Calemma, V., R. Rausa, R. Margarit, and E. Girardi. 1988. FT-ir study of coal oxidation at low temperature. Fuel 67:764–70. doi:10.1016/0016-2361(88)90147-0.
  • Chang, Q., R. Gao, H. Li, Z. Dai, G. Yu, X. Liu, and F. Wang. 2017. Effects of CO2 on coal rapid pyrolysis behavior and chemical structure evolution. J. Anal. Appl. Pyrolysis 128:370–78. doi:10.1016/j.jaap.2017.09.012.
  • Chen, C., J. Gao, and Y. Yan. 1998. Observation of the type of hydrogen bonds in coal by FTIR. Energy Fuels 12:446–49. doi:10.1021/ef970100z.
  • Chen, Y., M. Mastalerz, and A. Schimmelmann. 2012. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int. J. Coal Geol. 104:22–33. doi:10.1016/j.coal.2012.09.001.
  • Christensen, P., and A. Hamnett. 2000. In-situ techniques in electrochemistry-ellipsometry and FTIR. Electrochim. Acta 45:2443–59. doi:10.1016/S0013-4686(00)00332-7.
  • Dutta, S., C. Hartkopf-Fröder, K. Witte, R. Brocke, and U. Mann. 2013. Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation. Int. J. Coal Geol. 115:13–23. doi:10.1016/j.coal.2013.04.003.
  • Engle, M. A., L. F. Radke, E. L. Heffern, J. M. O’Keefe, J. C. Hower, C. D. Smeltzer, J. M. Hower, R. A. Olea, R. J. Eatwell, D. R. Blake, et al. 2012. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA. Sci. Total Environ. 420:146–59. doi:10.1016/j.scitotenv.2012.01.037.
  • Georgakopoulos, A. 2003. Study of low rank Greek coals using FTIR spectroscopy. Energy Sources 25:995–1005. doi:10.1080/00908310390232442.
  • Gethner, J. S. 1985. Thermal and oxidation chemistry of coal at low temperatures. Fuel 64:1443–46. doi:10.1016/0016-2361(85)90348-5.
  • He, X., X. Liu, B. Nie, and D. Song. 2017. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 206:555–63. doi:10.1016/j.fuel.2017.05.101.
  • Ibarra, J., R. Moliner, and A. J. Bonet. 1994. FT-ir investigation on char formation during the early stages of coal pyrolysis. Fuel 73:918–24. doi:10.1016/0016-2361(94)90287-9.
  • Ibarra, J., E. Munoz, and R. Moliner. 1996. FTIR study of the evolution of coal structure during the coalification process. Org. Geochem. 24:725–35. doi:10.1016/0146-6380(96)00063-0.
  • Iglesias, M. J., A. Jiménez, F. Laggoun-Défarge, and I. Suarez-Ruiz. 1995. FTIR study of pure vitrains and associated coals. Energy Fuels 9:458–66. doi:10.1021/ef00051a010.
  • International Standard. 2005. Classification of coals. Geneva: ISO Standards.
  • International Standard. 2018. Classification of coals, 18. Geneva: British Standards Institution.
  • Kauppinen, J. K., D. J. Moffatt, H. H. Mantsch, and D. G. Cameron. 1981a. Fourier self-deconvolution: A method for resolving intrinsically overlapped bands. Appl. Spectrosc. 35:271–76. doi:10.1366/0003702814732634.
  • Kauppinen, J. K., D. J. Moffatt, H. H. Mantsch, and D. G. Cameron. 1981b. Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours. Anal. Chem. 53:1454–57. doi:10.1021/ac00232a034.
  • Kister, J., M. Guiliano, G. Mille, and H. Dou. 1988. Changes in the chemical structure of low rank coal after low temperature oxidation or demineralization by acid treatment: Analysis by FT-ir and uv fluorescence. Fuel 67:1076–82. doi:10.1016/0016-2361(88)90373-0.
  • Lankinen, E., G. Sundholm, P. Talonen, T. Laitinen, and T. Saario. 1998. Characterization of a poly(3-methyl thiophene) film by an in-situ dc resistance measurement technique and in-situ FTIR spectroelectrochemistry. J. Electroanal. Chem. 447:135–45. doi:10.1016/S0022-0728(98)00012-6.
  • Li, K., R. Khanna, J. Zhang, M. Barati, Z. Liu, T. Xu, T. Yang, and V. Sahajwalla. 2015. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energy Fuels 29:7178–89. doi:10.1021/acs.energyfuels.5b02064.
  • Li, W., Y. Zhu, G. Wang, and B. Jiang. 2016. Characterization of coalification jumps during high rank coal chemical structure evolution. Fuel 185:298–304. doi:10.1016/j.fuel.2016.07.121.
  • Lin, X., C. Wang, K. Ideta, J. Miyawaki, Y. Nishiyama, Y. Wang, S. Yoon, and I. Mochida. 2014. Insights into the functional group transformation of a chinese brown coal during slow pyrolysis by combining various experiments. Fuel 118:257–64. doi:10.1016/j.fuel.2013.10.081.
  • Liu, M., J. Li, and Y. Duan. 2015. Effects of solvent thermal treatment on the functional groups transformation and pyrolysis kinetics of Indonesian lignite. Energy Convers. Manage. 103:66–72. doi:10.1016/j.enconman.2015.06.047.
  • Mu, R., and V. M. Malhotra. 1991. A new approach to elucidate coal-water interactions by an in situ transmission FT-i.r. technique. Fuel 70:1233–35. doi:10.1016/0016-2361(91)90246-7.
  • Niu, Z., G. Liu, H. Yin, D. Wu, and C. Zhou. 2016. Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR. Fuel 172:1–10. doi:10.1016/j.fuel.2016.01.007.
  • Orrego-Ruiz, J. A., R. Cabanzo, and E. Mejía-Ospino. 2011. Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy. Int. J. Coal Geol. 85:307–10. doi:10.1016/j.coal.2010.12.013.
  • Painter, P., M. Sobkowiak, and J. Youtcheff. 1987. FT-IR study of hydrogen bonding in coal. Fuel 66:973–78. doi:10.1016/0016-2361(87)90338-3.
  • Painter, P. C., R. W. Snyder, M. Starsinic, M. M. Coleman, D. W. Kuehn, and A. Davis. 1981. Concerning the application of FT-IR to the study of coal: A critical assessment of band assignments and the application of spectral analysis programs. Appl. Spectrosc. 35:475–85. doi:10.1366/0003702814732256.
  • Petersen, H. I., and H. P. Nytoft. 2006. Oil generation capacity of coals as a function of coal age and aliphatic structure. Org. Geochem. 37:558–83. doi:10.1016/j.orggeochem.2005.12.012.
  • Qi, X., D. Wang, H. Xin, and G. Qi. 2014. An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures. Spectrosc. Lett. 47:495–503. doi:10.1080/00387010.2013.817433.
  • Qin, B., G. Dou, Y. Wang, H. Xin, L. Ma, and D. Wang. 2017. A superabsorbent hydrogel–Ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190:129–35. doi:10.1016/j.fuel.2016.11.045.
  • Querol, X., X. Zhuang, O. Font, M. Izquierdo, A. Alastuey, I. Castro, B. L. van Drooge, T. Moreno, J. O. Grimalt, J. Elvira, et al. 2011. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. Int. J. Coal Geol. 85:2–22. doi:10.1016/j.coal.2010.09.002.
  • Rhoads, C. A., J. T. Senftle, M. M. Coleman, A. Davis, and P. C. Painter. 1983. Further studies of coal oxidation. Fuel 62:1387–92. doi:10.1016/0016-2361(83)90104-7.
  • Solomon, P. R. 1981. Relation between coal aromatic carbon concentration and proximate analysis fixed carbon. Fuel 60:3–6. doi:10.1016/0016-2361(81)90023-5.
  • Song, Y., B. Jiang, J. P. Mathews, G. Yan, and F. Li. 2017. Structural transformations and hydrocarbon generation of low-rank coal (vitrinite) during slow heating pyrolysis. Fuel Process. Technol. 167:535–44. doi:10.1016/j.fuproc.2017.08.003.
  • Stracher, G. B., and T. P. Taylor. 2004. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 59:7–17. doi:10.1016/j.coal.2003.03.002.
  • Tahmasebi, A., J. Yu, Y. Han, and X. Li. 2012. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air. Fuel Process. Technol. 101:85–93. doi:10.1016/j.fuproc.2012.04.005.
  • Topsøe, N.-Y. 2006. In situ FTIR: A versatile tool for the study of industrial catalysts. Catal. Today 113:58–64. doi:10.1016/j.cattod.2005.11.010.
  • van Dijk, P., J. Zhang, W. Jun, C. Kuenzer, and K.-H. Wolf. 2011. Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining information to previous remote sensing estimates. Int. J. Coal Geol. 86:108–19. doi:10.1016/j.coal.2011.01.009.
  • van Krevelen, D. W. 1993. Coal: Typology, physics, chemistry, constitution. 3rd ed. Ámsterdam: Elsevier.
  • Wang, D., G. Dou, X. Zhong, H. Xin, and B. Qin. 2014. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 117:218–23. doi:10.1016/j.fuel.2013.09.070.
  • Wang, D., H. Xin, X.-Y. Qi, G. Dou, G. Qi, and L. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, D., X. Zhong, J. Gu, and X. Qi. 2010. Changes in active functional groups during low-temperature oxidation of coal. Min. Sci. Technol. (China) 20:35–40. doi:10.1016/S1674-5264(09)60157-5.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, S.-H., and P. R. Griffiths. 1985. Resolution enhancement of diffuse reflectance ir spectra of coals by Fourier self-deconvolution: 1. CH stretching and bending modes. Fuel 64:229–36. doi:10.1016/0016-2361(85)90223-6.
  • Yen, T. F., W. H. Wu, and G. V. Chilingar. 1984. A study of the structure of petroleum asphaltenes and related substances by infrared spectroscopy. Energy Sources 7:203–35. doi:10.1080/00908318408908084.
  • Yoo, K. R., S. J. Ahn, and K. Kim. 1993. In-situDiffuse reflection FT-IR spectroscopic study of pyrolysis of lignite. Spectrosc. Lett. 26:1733–44. doi:10.1080/00387019308010772.
  • Zhang, Y., J. Wang, S. Xue, J. Wu, L. Chang, and Z. Li. 2016. Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR. Int. J. Coal Geol. 154–155:155–64. doi:10.1016/j.coal.2016.01.002.
  • Zhang, Y., X. Zhang, C. Liu, X. Yu, and S. Hu. 2018. Impact of the crystallite parameters and coal ranks on oxidation and combustion properties of Carboniferous coals and Jurassic coals. Arabian J. Geosci. 11.
  • Zhou, Z., Q. Wang, J. Lin, N. Tian, and S. Sun. 2010. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochim. Acta 55:7995–99. doi:10.1016/j.electacta.2010.02.071.
  • Zodrow, E. L., J. A. D’Angelo, R. Helleur, and Z. Šimůnek. 2012. Functional groups and common pyrolysate products of odontopteris cantabrica (index fossil for the cantabrian substage, carboniferous). Int. J. Coal Geol. 100:40–50. doi:10.1016/j.coal.2012.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.