279
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Mechanistic Study of the Inhibition of Active Radicals in Coal by Catechin

, , , &
Pages 1931-1948 | Received 29 Nov 2019, Accepted 14 Jan 2020, Published online: 20 Jan 2020

References

  • Barbara, P., and B. W. Andrzej. 2007. Groups of paramagnetic centres in coal samples with different carbon contents. Res. Chem. Intermed. 33:825–39. doi:10.1163/156856707782169336.
  • Cheng, W. M., X. M. Hu, J. Xie, and Y. Y. Zhao. 2017a. An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties. Fuel 210:826–35. doi:10.1016/j.fuel.2017.09.007.
  • Cheng, W. M., X. M. Hu, Y. Y. Zhao, M. Y. Wu, Z. X. Hu, and X. T. Yu. 2017b. Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels. e-Polym. 1:95–106.
  • Clemens, A. H., T. W. Matheson, and D. E. Rogers. 1991. Low temperature oxidation studies of dried New Zealand coals. Fuel 70:215–21. doi:10.1016/0016-2361(91)90155-4.
  • Dou, G. L., D. M. Wang, X. X. Zhong, and B. T. Qin. 2014. Effectiveness of catechin and poly(ethylene glycol) at inhibiting the spontaneous combustion of coal. Fuel Process. Technol. 120:123–27. doi:10.1016/j.fuproc.2013.12.016.
  • Fereidoon, S., and A. Priyatharini. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects –A review. J. Funct. Foods 18:820–97. doi:10.1016/j.jff.2015.06.018.
  • Hokyung, C., T. Chinnasamy, K. Sangdo, R. Youngjoon, L. Jeonghwan, and L. Sihyun. 2011. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal. Fuel Process. Technol. 92:2005–10. doi:10.1016/j.fuproc.2011.05.025.
  • Ignasimuthu, K. S., and N. Subban. 2018. Separation of catechins from green tea (Camellia sinensis L.) by microwave assisted acetylation, evaluation of antioxidant potential of individual components and spectroscopic analysis. LWT-Food Sci. Technol. 91:391–97. doi:10.1016/j.lwt.2018.01.042.
  • John, N. C., J. D. Stuart, S. Abou, and J. W. David. 2009. Greenhouse gas emissions from lowtemperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int. J. Coal Geol. 78:161–68. doi:10.1016/j.coal.2008.12.001.
  • Kiokias, S., T. Varzakas, and V. Oreopoulou. 2008. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Crit. Rev. Food Sci. Nutr. 48 (1):78–93. doi:10.1080/10408390601079975.
  • Li, J. H., Z. H. Li, Y. L. Yang, B. Kong, and C. J. Wang. 2018a. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Process. Technol. 171:350–60. doi:10.1016/j.fuproc.2017.09.027.
  • Li, J. H., Z. H. Li, Y. L. Yang, C. J. Wang, and L. T. Sun. 2018b. Experimental study on the effect of mechanochemistry on coal spontaneous combustion. Powder Technol. 339:102–10. doi:10.1016/j.powtec.2018.08.006.
  • Li, J. H., Z. H. Li, Y. L. Yang, X. Y. Zhang, D. C. Yan, and L. W. Liu. 2017. Inhibitive effects of antioxidants on coal spontaneous combustion. Energy Fuels 31:14180–90. doi:10.1021/acs.energyfuels.7b02339.
  • Li, W. X., Y. F. Li, and R. R. He. 2016a. Review of anti-oxidative evaluation methods for catechins and therapeutic mechanism of catechins. Traditional Chin. Drug Res. Clin. Pharmacol. 27 (2):295–303. in Chinese.
  • Li, Z. H., B. Kong, A. Z. Wei, Y. L. Yang, Y. B. Zhou, and L. Z. Zhang. 2016b. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res. Int. 23:23593–605. doi:10.1007/s11356-016-7589-x.
  • Liang, Y. T., J. Zhang, L. C. Wang, H. Z. Luo, and T. Ren. 2019. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review. J. Loss Prev. Process Ind. 57:208–22. doi:10.1016/j.jlp.2018.12.003.
  • Lin, Q., S. G. Wang, Y. T. Liang, S. L. Song, and T. X. Ren. 2017. Analytical prediction of coal spontaneous combustion tendency: Velocity range with high possibility of self-ignition. Fuel Process. Technol. 159:38–47. doi:10.1016/j.fuproc.2016.09.027.
  • Ling., Q., C. B. Deng, F. W. Dai, and Y. P. Fan. 2019. Experimental Study on a metal-chelating agent inhibiting spontaneous combustion of coal. Energy Fuels 33:9232−9240.
  • Liotta, R., G. Brons, and J. Isaacs. 1983. Oxidative weathering of Illinois No. 6 coal. Fuel 62:781–91. doi:10.1016/0016-2361(83)90028-5.
  • Liu, J. X., X. M. Jiang, J. Shen, and H. Zhang. 2014. Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics. Adv. Powder Technol. 25:916–25. doi:10.1016/j.apt.2014.01.021.
  • Lu, Y. 2017. Laboratory Study on the rising temperature of spontaneous combustion in coal stockpiles and a paste foam suppression technique. Energy Fuels 31:7290−7298.
  • Lu, Y., S. L. Shi, H. Q. Wang, Z. J. Tian, Q. Ye, and H. Y. Niu. 2019. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures. Int. J. Heat Mass Transf. 131:594–603. doi:10.1016/j.ijheatmasstransfer.2018.11.079.
  • Luo, L., J. X. Liu, H. Zhang, J. F. Ma, X. Y. Wang, and X. M. Jiang. 2017. TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal. J. Anal. Appl. Pyrolysis 128:64–74. doi:10.1016/j.jaap.2017.10.024.
  • Pilawa, B., H. Wachowska, M. Kozłowski, A. B. Więckowski, and L. Najder-Kozdrowska. 2015. Groups of paramagnetic centres in reduced and methylated low rank coal. Acta Phys. Pol. A 128:264–67. doi:10.12693/APhysPolA.128.264.
  • Qi, X. Y., L. Z. Chen, H. H. Xin, T. C. Ji, C. W. Bai, R. Q. Song, H. B. Xue, and F. M. Liu. 2018. Reaction mechanism and thermodynamic properties of aliphatic hydrocarbon groups during coal self-heating. Energy Fuels 32:10469–77. doi:10.1021/acs.energyfuels.8b02165.
  • Qi, X. Y., C. X. Wei, Q. Z. Li, and L. B. Zhang. 2016. Controlled-release inhibitor for preventing the spontaneous combustion of coal. Nat Hazards 82:891–901. doi:10.1007/s11069-016-2224-1.
  • Qin, B. T., G. L. Dou, Y. Wang, H. H. Xin, L. Y. Ma, and D. M. Wang. 2017. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190:129–35. doi:10.1016/j.fuel.2016.11.045.
  • Qin, B. T., Y. Lu, Y. Li, and D. M. Wang. 2014. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control. Adv. Powder Technol. 25:1527–33. doi:10.1016/j.apt.2014.04.010.
  • Sang, S. M., S. Y. Tian, H. Wang, R. E. Stark, R. T. Rosen, C. S. Yang, and C. T. Ho. 2003. Chemical studies of the antioxidant mechanism of tea catechins: radical reaction products of epicatechin with peroxyl radicals. Bioorg. Med. Chem. 11:3371–78. doi:10.1016/S0968-0896(03)00367-5.
  • Scaccia, S. 2013. TG–FTIR and kinetics of devolatilization of Sulcis coal. J. Anal. Appl. Pyrolysis 104:95–102. doi:10.1016/j.jaap.2013.09.002.
  • Shi, Q. L., and B. T. Qin. 2019. Experimental research on gel-stabilized foam designed to prevent and control spontaneous combustion of coal. Fuel 254:115558. doi:10.1016/j.fuel.2019.05.141.
  • Shi, T., X. F. Wang, J. Deng, and Z. Y. Wen. 2004. Mechanism of spontaneous combustion of coal at initial stage. J. Fuel Chem. Technol. 32 (6):652–57. in Chinese.
  • Shi, T., X. F. Wang, J. Deng, and Z. Y. Wen. 2005. The mechanism at the initial stage of the roomtemperature oxidation of coal. Combust. Flame 140:332–45. doi:10.1016/j.combustflame.2004.10.012.
  • Slovak, V., and B. Taraba. 2012. Urea and CaCl2 as inhibitors of coal low-temperature oxidation. J. Therm. Anal Calorim. 110:363–67. doi:10.1007/s10973-012-2482-4.
  • Stevanato, R., M. Bertelle, and S. Fabris. 2014. Photoprotective characteristics of natural antioxidant polyphenols. Regul. Toxicol. Pharm. 69:71–77. doi:10.1016/j.yrtph.2014.02.014.
  • Tsai, Y. T., Y. Yang, C. P. Wang, C. M. Shu, and J. Deng. 2018. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion. Int. J. Energy Res. 42:1158–71. doi:10.1002/er.3915.
  • Uri, G., A. Zeev, M. Lionel, and C. Haim. 2012. Field and laboratory simulation study of hot spots in stockpiled bituminous coal. Energy Fuels 26:7230–35. doi:10.1021/ef301474t.
  • Wang, D. M., G. L. Dou, X. X. Zhong, H. H. Xin, and B. T. Qin. 2014a. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 117:218–23. doi:10.1016/j.fuel.2013.09.070.
  • Wang, D. M., H. H. Xin, X. Y. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, D. M., H. H. Xin, X. Y. Qi, G. L. Dou, and X. X. Zhong. 2014b. Mechanism and relationships of elementary reaction in spontaneous combustion of coal: The coal oxidation kinetics theory and application. J. China Coal Soc. 39 (8):1667–74. ( in Chinese).
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003a. Analysis of the mechanism of the low-temperature oxidation of coal. Combust. Flame 134:107–17. doi:10.1016/S0010-2180(03)00086-5.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003b. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wiwik, S. W., and D. K. Zhang. 2001. The effect of inherent and added inorganic matter on lowtemperature oxidation reaction of coal. Fuel Process. Technol. 74:145–60. doi:10.1016/S0378-3820(01)00237-5.
  • Xi, Z. L., and A. Li. 2016. Characteristics of thermoplastic powder in an aqueous foam carrier for inhibiting spontaneous coal combustion. Process Saf. Environ. Prot. 104:268–76. doi:10.1016/j.psep.2016.09.012.
  • Xiao, Y., S. J. Ren, J. Deng, and C. M. Shu. 2018. Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion. Fuel 227:325–33. doi:10.1016/j.fuel.2018.04.070.
  • Xin, H. H., D. M. Wang, X. Y. Qi, G. S. Qi, and G. L. Dou. 2014. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Process. Technol. 118:287–95. doi:10.1016/j.fuproc.2013.09.011.
  • Xin, H. H., D. M. Wang, X. Y. Qi, T. Xu, G. L. Dou, and X. X. Zhong. 2013. Distribution and quantum chemical analysis of lignite surface functional groups. J. Univ. Sci. Technol. Beijing 35 (2):135–39. ( in Chinese).
  • Zhang, H. Y., and L. F. Wang. 2002. Quantum chemical study of molecular mechanism for green EC to scavenge peroxyl radicals. J. Zibo Univ. 4 (3):5–10. ( in Chinese).
  • Zhao, B. L. 1999. Oxygen free radicals and natural antioxidants. 1st. Beijing: Science Press. ( in Chinese).
  • Zheng, Y. G., Y. S. Wang, and Y. P. Xue. 2004. Production and application of antioxidants. 1st. Beijing: Chemical industry press. ( in Chinese).
  • Zhong, X. X., B. T. Qin, G. L. Dou, C. Xia, and F. Wang. 2018. A chelated calcium-procyanidine-attapulgite composite inhibitor for the suppression of coal oxidation. Fuel 217:680–688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.