345
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Flame propagation in the mixtures of O2/N2 oxidizer with fluorinated propene refrigerants (CH2CFCF3, CHFCHCF3, CH2CHCF3)

, , &
Pages 1949-1972 | Received 23 Sep 2019, Accepted 21 Jan 2020, Published online: 21 Feb 2020

References

  • Babkin, V. S., V. A. Bunev, and T. A. Bolshova. 2015. Superadiabatic temperature phenomenon in the combustion processes due to a competition between chemical reactions. Combust. Explosion Shock Waves 51:151. doi:10.1134/S0010508215020021.
  • Babushok, V., G. T. Linteris, D. R. Burgess Jr, and P. T. Baker. 2015a. Hydrocarbon flame inhibition by C3H2F3Br (2-BTP). Combust. Flame 162:1104. doi:10.1016/j.combustflame.2014.10.002.
  • Babushok, V. I., and G. T. Linteris. 2017. Kinetic mechanism of 2,3,3,3-tetrafluoropropene (HFO-1234yf) combustion. J. Fluorine Chem. 201:15. doi:10.1016/j.jfluchem.2017.07.005.
  • Babushok, V. I., G. T. Linteris, and O. Meier. 2012. Combustion properties of halogenated fire suppressants. Combus.t Flame 159:3569. doi:10.1016/j.combustflame.2012.07.005.
  • Babushok, V. I., G. T. Linteris, and P. T. Baker. 2015b. Influence of water vapor on hydrocarbon combustion in the presence of hydrofluorocarbon agents. Combust. Flame 162:2307. doi:10.1016/j.combustflame.2014.12.004.
  • Balaganesh, M., and B. Rajakumar. 2012. Rate coefficients and reaction mechanism for the reaction of OH radicals with (E)-CF3CH═CHF, (Z)-CF3CH═CHF, (E)-CF3CF═CHF, and (Z)-CF3CF═CHF between 200 and 400 K: Hybrid density functional theory and canonical variational transition state theory calculations. J. Phys. Chem. A 116:9832.
  • Burgess, D. R., Jr, J. A. Manion, R. R. Burrell, V. I. Babushok, M. J. Hegetschweiler, and G. T. Linteris. 2019. A validated model for burning velocities of R-32/O2/N2 mixtures over a wide range of conditions. Combust. Flame. submitted.
  • Burgess, D. R., Jr, M. R. Zachariah, W. Tsang, and P. R. Westmoreland. 1995. Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Prog. Energy Combust. Sci. 21:453. doi:10.1016/0360-1285(95)00009-7.
  • Burgess, D. R., V. I. Babushok, G. T. Linteris, and J. A. Manion. 2015. A chemical kinetic mechanism for 2-Bromo-3,3,3-trifluoropropene (2-BTP) flame inhibition. Int. J. Chem. Kinet.47:533. doi:10.1002/kin.2015.47.issue-9.
  • Burrell, R. R., J. L. Pagliaro, and G. T. Linteris. 2019. Effects of stretch and thermal radiation on difluoromethane/air burning velocity measurements in constant volume spherically expanding flames. Proc. Combust. Inst. 37:4231. doi:10.1016/j.proci.2018.06.018.
  • Chen, Z. 2010. Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit. Combust. Flame 157:2267. doi:10.1016/j.combustflame.2010.07.010.
  • Chen, Z. 2015. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combust. Flame 162:2442. doi:10.1016/j.combustflame.2015.02.012.
  • Cobos, C. J., G. Knight, L. Soelter, E. Tellbach, and J. Troe. 2017b. Shock wave and theoretical modeling study of the dissociation of CH2F2. II. Secondary reactions. J. Phys. Chem. A 121:7820. doi:10.1021/acs.jpca.7b05857.
  • Cobos, C. J., K. Hintzer, L. Soelter, E. Tellbach, A. Thaler, and J. Troe. 2017a. Shock wave and theoretical modeling study of the dissociation of CH2F2. I. Primary processes. J. Phys. Chem. A 121:7813. doi:10.1021/acs.jpca.7b05854.
  • Davis, S. G., C. K. Law, and H. Wang. 1999. Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames. Combust. Flame 119:375. doi:10.1016/S0010-2180(99)00070-X.
  • Ganyecz, A., M. Kallay, and J. Csontos. 2018. High accuracy quantum chemical and thermochemical network data for the heats of formation of fluorinated and chlorinated methanes and ethanes. J. Phys. Chem. A 122:5993. doi:10.1021/acs.jpca.8b00614.
  • Goodwin, D. G., H. K. Moffat, and R. L. Speth. 2016. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Pasedena: California Institute of Technology. Version 2.1.1. http:/www.cantera.org
  • Goos, E., A. Burcat, and B. Ruscic 2012. Extended third millennium thermodynamic database for combustion and air-pollution use with updates from active thermochemical tables [Online]. Aerospace Engineering, Technion-IIT Haifa Israel. Accessed August 2012. ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics/BURCAT.THR
  • Hegetschweiler, M. J., J. L. Pagliaro, L. Berger, R. Hesse, J. Beeckmann, H. Pitsch, and G. T. Linteris. 2020. Effects of stretch and radiation on the laminar burning velocity of R-32/Air flames.Sci. Technol. Built Environ..
  • Holmes, J. L., and C. Aubry. 2012. Group additivity values for estimating the enthalpy of formation of organic compounds: An update and reappraisal. 2. C, H, N, O, S, and halogens. J. Phys. Chem. A 116:7196. doi:10.1021/jp303780m.
  • Kee, R. J., F. M. Rupley, and J. A. Miller. 1989. CHEMKIN-II: A fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Livermore, CA: USA.
  • Kee, R. J., F. M. Rupley, and J. A. Miller. 1990. The Chemkin Thermodynamic Data Base. Livermore, CA: Sandia National Laboratories.
  • Kee, R. J., J. F. Grcar, M. D. Smooke, and J. A. Miller. 1991. A fortran computer program for modeling steady laminar one-dimensional premixed flames. Livermore, CA: USA.
  • Klippenstein, S. J., J. A. Miller, and L. B. Harding 2003. Resolving the mystery of prompt CO2: The HCCO+O-2 reaction. Proc. Combust. Inst. 29, 1209.
  • Kondo, S., K. Takizawa, A. Takahashi, K. Tokuhashi, J. Mizukado, and A. Sekiya. 2009a. Flammability limits of olefinic and saturated fluoro-compounds. J. Hazard. Mat. 171:613. doi:10.1016/j.jhazmat.2009.06.042.
  • Kondo, S., K. Takizawa, and K. Tokuhashi. 2014. Effect of high humidity on flammability property of a few non-flammable refrigerants. J. Fluorine Chem. 161:29. doi:10.1016/j.jfluchem.2014.02.003.
  • Korobeinichev, O. P., A. A. Paletsky, T. A. Bolshova, and V. D. Knyazev. 2012. A numerical study of the superadiabatic flame temperature phenomenon in HN3 flames. Combust. Theory Modell. 16:927. doi:10.1080/13647830.2012.687458.
  • Linteris, G. T., D. R. Burgess, F. Takahashi, V. R. Katta, H. K. Chelliah, and O. Meier. 2012. Stirred reactor calculations to understand unwanted combustion enhancement by potential halon replacements. Combust. Flame 159:1016. doi:10.1016/j.combustflame.2011.09.011.
  • Linteris, G. T., and V. I. Babushok. 2020. Predicted burning velocities of C1 and C2 hydrofluorocarbon refrigerant flames with air. J. Fluorine Chem. (230):109324. doi:10.1016/j.jfluchem.2019.05.002.
  • Liu, F. S., and O. L. Gulder. 2005. Effects of H-2 and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames. Combust. Flame 143:264. doi:10.1016/j.combustflame.2005.03.018.
  • Luo, Y.-R. 2003. Handbook of dissociation energies in organic compounds. Boca Raton, FL: CRC Press.
  • Matsugi, A., and H. Shiina. 2014. Kinetics of hydrogen abstraction reactions from fluoromethanes and fluoroethanes. Bull. Chem. Soc. Japan 87:890. doi:10.1246/bcsj.20140101.
  • Matsugi, A., and K. Takahashi. 2017. Thermal decomposition of 2,3,3,3-and trans-1,33,3-tetrafluoropropenes. J. Phys. Chem. A 121:4881. doi:10.1021/acs.jpca.7b04086.
  • Meeks, E., R. J. Kee, D. S. Dandy, and M. E. Coltrin. 1993. Computational simulation of diamond chemical vapor-Deposition in premixed C2H2/O-2/H-2 AND CH4/O-2-Strained flames. Combust. Flame 92:144. doi:10.1016/0010-2180(93)90204-G.
  • Needham, C. D., and P. R. Westmoreland. 2017. Combustion and flammability chemistry for the refrigerant HFO-1234yf (2,3,3,3-tetrafluroropropene). Combust. Flame 184:176. doi:10.1016/j.combustflame.2017.06.004.
  • Orlov, Y. D., R. K. Zaripov, and Y. A. Lebedev. 1998. Determination of enthalpies of formation of organic free radicals from bond dissociation energies - 2. Halosubstituted radicals. Russian Chemical Bulletin 47:621. doi:10.1007/BF02495965.
  • Papas, P., S. Zhang, W. Kim, S. P. Zeppieri, M. B. Colket, and P. Verma. 2017. Laminar flame speed of 2,3,3,3-tetrafluoropropene mixtures. Proc. Combust. Inst. 36:1145. doi:10.1016/j.proci.2016.06.073.
  • Pfahl, U. J., M. C. Ross, J. E. Shepherd, K. O. Pasamehmetoglu, and C. Unal. 2000. Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3-N2O-O2-N2 mixtures. Combust. Flame 123:140. doi:10.1016/S0010-2180(00)00152-8.
  • Qiao, L., Y. Gan, T. Nishiie, W. J. A. Dahm, and E. S. Oran. 2010. Extinction of premixed methane/air flames in microgravity by diluents: Effects of radiation and Lewis number. Combust. Flame 157:1446. doi:10.1016/j.combustflame.2010.04.004.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, J. W. C. Gardiner, et al. 2000. GRI Mech 3.0 [Online]. Berkeley: University of California, Berkeley. Accessed Sept. 9, 2015. http://www.me.berkeley.edu/gri_mech
  • Stein, S. E., and R. L. Brown 2019. Structures and properties group additivity model. NIST Chemistry WebBook. NIST, retrieved 2019
  • Takizawa, K. 2015. Fundamental flammability (Section 2). Risk assessment of mildly flammable refrigerants. Technical report. JSRAE, Tokyo, Japan.
  • Takizawa, K., A. Takahashi, K. Tokuhashi, S. Kondo, and A. Sekiya. 2005. Burning velocity measurement of fluorinated compounds by the spherical-vessel method. Combust. Flame141:298. doi:10.1016/j.combustflame.2005.01.009.
  • Takizawa, K., E. Hihara, C. Dang, and M. Ito 2017. 2. Fundamental flammability. 2.3.1. Effect of humidity on burning velocity. Risk Assessment of Mildly Flammable Refrigerants. Final Report 2016. Tokyo, Japan: The Japan Society of Refrigerating and Air Conditioning Engineers.
  • Takizawa, K., K. Tokuhashi, and S. Kondo. 2009. Flammability assessment of CH2=CFCF3: Comparison with fluoroalkenes and fluoroalkanes. J. Hazard. Mater. 172:1329. doi:10.1016/j.jhazmat.2009.08.001.
  • Unep. 2016. Further amendment of the montreal protocol. Kigali, Rwanda: United Nations Environment Programme.
  • Velders, G. J., A. R. Ravishankara, M. K. Miller, M. J. Molina, J. Alcamo, J. S. Daniel, D. W. Fahey, S. A. Montzka, and S. Reimann. 2012. Preserving Montreal Protocol climate benefits by limiting HFCs. Sci. 335:922. doi:10.1126/science.1216414.
  • Williams, B. A., D. M. L’esperance, and J. W. Fleming. 2000. Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: Comparison of experimental data with kinetic modeling. Combust. Flame 120:160. doi:10.1016/S0010-2180(99)00081-4.
  • Yu, H., W. Han, J. Santner, X. Gou, C. H. Sohn, Y. Ju, and Z. Chen. 2014. Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combust. Flame 161:2815.
  • Zou, P., and D. L. Osborn. 2004. On the mechanism of the HCCO+O-2 reaction: Probing multiple pathways to a single product channel. Phys. Chem. Chem. Phys. 6:1697. doi:10.1039/B400183D.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.