310
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Numerical Investigation of Coaxial GCH4/LOx Combustion at Supercritical Pressures

, , &
Pages 1973-1997 | Received 28 Sep 2019, Accepted 25 Jan 2020, Published online: 05 Feb 2020

References

  • Abudour, A. M., S. A. Mohammad, R. L. Robinson Jr, and K. A. Gasem. 2012. Volume translated Peng–Robinson equation of state for saturated and single-phase liquid densities. Fluid Phase Equilib. 335:74–87. doi:10.1016/j.fluid.2012.08.013.
  • Ali, M. S. M., C. J. Doolan, and V. Wheatley. 2009. Grid convergence study for a two-dimensional simulation of flow around a square cylinder at a low Reynolds number. Seventh International Conference on CFD in The Minerals and Process Industries, ed. P. J. Witt and M. P. Schwarz, Melbourne, Australia, 1–6.
  • Andersen, J., C. L. Rasmussen, T. Giselsson, and P. Glarborg. 2009. Global combustion mechanisms for use in cfd modeling under oxy-fuel conditions. Energy & Fuels 23 (3):1379–1389.
  • ANSYS 18.0 User’s Manual. 2017. Canonsburg, PA: ANSYS Inc.
  • Baled, H., R. M. Enick, Y. Wu, M. A. McHugh, W. Burgess, D. Tapriyal, and B. D. Morreale. 2012. Prediction of hydrocarbon densities at extreme conditions using volume-translated SRK and PR equations of state fit to high temperature, high pressure PVT data. Fluid Phase Equilib. 317:65–76. doi:10.1016/j.fluid.2011.12.027.
  • *CANDEL, S., M. Juniper, G. Singla, P. Scouflaire, and C. Rolon. 2006. Structure and dynamics of cryogenic flames at supercritical pressure. Combust. Sci. Technol. 178 (1–3):161–92. doi:10.1080/00102200500292530.
  • Chehroudi, B., D. Talley, and E. Coy. 2002. Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures. Phys. Fluids 14 (2):850–61. doi:10.1063/1.1430735.
  • Chehroudi, B., R. Cohn, and D. Talley. 2002. Cryogenic shear layers: Experiments and phenomenological modeling of the initial growth rate under subcritical and supercritical conditions. Int. J. Heat Fluid Flow 23 (5):554–63. doi:10.1016/S0142-727X(02)00151-0.
  • Cutrone, L., M. Ihme, and M. Herrmann. 2006. Modeling of high-pressure mixing and combustion in liquid rocket injectors. Proceedings of the Summer Program, Stanford, California, 269.
  • Cutrone, L., P. De Palma, G. Pascazio, and M. Napolitano. 2010. A RANS flamelet–progress-variable method for computing reacting flows of real-gas mixtures. Comput. Fluids 39 (3):485–98. doi:10.1016/j.compfluid.2009.10.001.
  • De Giorgi, M. G., and A. Leuzzi. 2009. CFD simulation of mixing and combustion in LOx/CH4 spray under supercritical conditions.39th AIAA Fluid Dynamics Conference, San Antonio, Texas, 4038.
  • De Giorgi, M. G., A. Sciolti, and A. Ficarella, 2011a. Different combustion models applied to high pressure LOX/CH4 jet flames. Proceedings of the 4th European Conference for Aerospace Sciences Saint Petersburg, Russia, 4–8.
  • De Giorgi, M. G., A. Sciolti, and A. Ficarella. 2011b. Comparisons between different combustion models for High pressure LOX/CH4 jet flames. 41st AIAA Fluid Dynamics Conference and Exhibit, Honolulu, Hawaii, 3587.
  • De Giorgi, M. G., A. Sciolti, and A. Ficarella. 2012. Spray and combustion modeling in high pressure cryogenic jet flames. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, Copenhagen, Denmark, 1161–76.
  • De Giorgi, M. G., L. Tarantino, A. Ficarella, and D. Laforgia. 2010. Numerical modeling of high-pressure cryogenic sprays. 40th Fluid Dynamics Conference and Exhibit, Chicago, Illinois, 5007.
  • Ficarella, A., and M. De Giorgi. 2009. Fluid modelling of supercritical reacting flows in liquid rocket engine. 3rd European Conference For Aero-Space Sciences EUCASS, Versailles, France.
  • Frassoldati, A., A. Cuoci, T. Faravelli, E. Ranzi, C. Candusso, and D. Tolazzi. 2009. Simplified kinetic schemes for oxy-fuel combustion. 1st International conference on sustainable fossil fuels for future energy, Rome, Italy, 6–10.
  • Ge, Y., S. Li, and X. Wei. 2019. Combustion states distinction of the methane/oxygen laminar co-flow diffusion flame at high pressure. Fuel 243:221–29. doi:10.1016/j.fuel.2019.01.113.
  • Jones, W. P., and R. P. Lindstedt. 1988. Global reaction schemes for hydrocarbon combustion. Combust. Flame 73 (3):233–49. doi:10.1016/0010-2180(88)90021-1.
  • Kim, T., Y. Kim, and S. K. Kim. 2011a. Real-fluid flamelet modeling for gaseous hydrogen/cryogenic liquid oxygen jet flames at supercritical pressure. J. Supercrit. Fluids 58 (2):254–62. doi:10.1016/j.supflu.2011.05.020.
  • Kim, T., Y. Kim, and S. K. Kim. 2011b. Numerical study of cryogenic liquid nitrogen jets at supercritical pressures. J. Supercrit. Fluids 56 (2):152–63. doi:10.1016/j.supflu.2010.12.008.
  • Kim, T., Y. Kim, and S. K. Kim. 2013. Effects of pressure and inlet temperature on coaxial gaseous methane/liquid oxygen turbulent jet flame under transcritical conditions. J. Supercrit. Fluids 81:164–74. doi:10.1016/j.supflu.2013.05.011.
  • Matheis, J., H. Müller, C. Lenz, M. Pfitzner, and S. Hickel. 2016. Volume translation methods for real-gas computational fluid dynamics simulations. J. Supercrit. Fluids 107:422–32. doi:10.1016/j.supflu.2015.10.004.
  • Mayer, W., J. Telaar, R. Branam, G. Schneider, and J. Hussong. 2003. Raman measurements of cryogenic injection at supercritical pressure. Heat Mass Transfer 39 (8–9):709–19. doi:10.1007/s00231-002-0315-x.
  • Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8):1598–605. doi:10.2514/3.12149.
  • Müller, H., and M. Pfitzner, 2015. Large-eddy simulation of transcritical LOx/CH4 jet flames. 6th European Conference for Aeronautics and Space Sciences (EUCASS). National Institute of Standards and Technology Webbook. http://webbook.nist.gov/chemistry/fluid/
  • Oefelein, J. C. 2006. Mixing and combustion of cryogenic oxygen-hydrogen shear-coaxial jet flames at supercritical pressure. Combust. Sci. Technol. 178 (1–3):229–52. doi:10.1080/00102200500325322.
  • Oschwald, M., J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley. 2006. *Injection of fluids into supercritical environments. Combust. Sci. Technol. 178 (1–3):49–100. doi:10.1080/00102200500292464.
  • Reddy, M., A. De, and R. Yadav. 2015. Effect of precursors and radiation on soot formation in turbulent diffusion flame. Fuel 148:58–72. doi:10.1016/j.fuel.2015.01.080.
  • Roache, P. J. 1994. Perspective: A method for uniform reporting of grid refinement studies. J. Fluids. Eng. 116 (3):405–13. doi:10.1115/1.2910291.
  • Roache, P. J. 1997. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29 (1):123–60. doi:10.1146/annurev.fluid.29.1.123.
  • Saini, R., and A. De. 2017. Assessment of soot formation models in lifted ethylene/air turbulent diffusion flame. Therm. Sci. Eng. Prog. 3:49–61. doi:10.1016/j.tsep.2017.06.002.
  • Saini, R., S. Prakash, A. De, and R. Yadav. 2018. Investigation of NOx in piloted stabilized methane-air diffusion flames using finite-rate and infinitely-fast chemistry based combustion models. Therm. Sci. Eng. Prog. 5:144–57. doi:10.1016/j.tsep.2017.11.008.
  • Saqr, K. M., and M. A. Wahid. 2011. Comparison of four eddy-viscosity turbulence models in the eddy dissipation modeling of turbulent diffusion flames. Int. J. Appl. Math. Mech. 7 (19):1–18.
  • Singla, G., P. Scouflaire, C. Rolon, and S. Candel. 2005. Transcritical oxygen/transcritical or supercritical methane combustion. Proc. Combust. Inst. 30 (2):2921–28. doi:10.1016/j.proci.2004.08.063.
  • Singla, G., P. Scouflaire, J. C. Rolon, and S. Candel. 2007. Flame stabilization in high pressure LOx/GH2 and GCH4 combustion. Proc. Combust. Inst. 31 (2):2215–22. doi:10.1016/j.proci.2006.07.094.
  • Sutton, G. P. 2005. History of liquid propellant rocket engines. American Institute of Aeronautics and Astronautics.
  • Wilcox, D. C. 1998. Turbulence modeling for CFD. Vol. 2, 172–80. La Canada, CA: DCW industries.
  • Yang, B., F. Cuoco, and M. Oschwald. 2007. Atomization and flames in LOX/H2-and LOX/CH4-spray combustion. J. Propul. Power 23 (4):763–71. doi:10.2514/1.26538.
  • Yang, B., and S. B. Pope. 1998. An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combust. Flame 112 (1–2):16–32. doi:10.1016/S0010-2180(97)81754-3.
  • Zips, J., H. Müller, and M. Pfitzner. 2018. Efficient thermo-chemistry tabulation for non-premixed combustion at high-pressure conditions. Flow Turbul. Combust. 101 (3):821–50. doi:10.1007/s10494-018-9932-4.
  • Zurbach, S., J. L. Thomas, M. Sion, T. Kachler, L. Vingert, and M. Habiballah. 2002. Recent advances on LOx/Methane combustion for liquid rocket engine injector. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, 4321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.