288
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Influence of Water Content on the Coal Spontaneous Combustion Behavior during Low-temperature Pre-pyrolysis Processes

, , , &
Pages 2058-2069 | Received 29 Nov 2019, Accepted 04 Feb 2020, Published online: 20 Feb 2020

References

  • Arisoy, A., B. Beamish, and B. Yoruk. 2017. Moisture moderation during coal self-heating. Fuel 210:352–58. doi:10.1016/j.fuel.2017.08.075.
  • Gou, X., J. H. Zhou, J. Z. Liu, and K. F. Cen. 2012. Effects of water vapor on the pyrolysis products of pulverized coal. Procedia Environ. Sci. 12:400–07. doi:10.1016/j.proenv.2012.01.296.
  • Hao, C. Y., J. R. Wang, N. J. Ma, Q. B. Zhao, and X. Y. Wang. 2014. Thermal equilibrium study on effect of wetting on coal spontaneous combustion. China Saf. Sci. J. 24:54–59.
  • Kadioğlu, Y., and M. Varamaz. 2003. The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignites. Fuel 82:1685–93. doi:10.1016/S0016-2361(02)00402-7.
  • Küçük, A., Y. Kadioğlu, and M. S. Gülaboğlu. 2003. A study of spontaneous combustion characteristics of a Turkish lignite: Particle size, moisture of coal, humidity of coal. Combust. Flame 133:255–61. doi:10.1016/S0010-2180(02)00553-9.
  • Li, J. H., Z. H. Li, Y. L. Yang, Y. J. Duan, J. Xu, and R. T. Gao. 2019a. Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures. Energy 185:28–38. doi:10.1016/j.energy.2019.07.041.
  • Li, J. H., Z. H. Li, Y. L. Yang, and C. J. Wang. 2018. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. Fuel 233:237–46. doi:10.1016/j.fuel.2018.06.039.
  • Li, J. H., Z. H. Li, Y. L. Yang, and X. Y. Zhang. 2019b. Study on the generation of active sites during low-temperature pyrolysis of coal and its influence on coal spontaneous combustion. Fuel 241:283–96. doi:10.1016/j.fuel.2018.12.034.
  • Li, Y. B., Y. Y. Guo, and D. Wang. 2016. Coal surface structure and gas adsorption underdirect current electric field treatment. J. China Coal Soc. 41:2786–92.
  • Lin, Y. B., Y. Qin, X. Wang, Z. H. Duan, and D. M. Ma. 2019. Geology and emission of mine gas in BinChang mining area with low rank coal and high mine gas. J. China Coal Soc. 44:2151–58.
  • Liu, M. Q., J. Z. Liu, R. K. Wang, and K. F. Cen. 2013. Effects of pyrolysis temperature on slurry ability of lignite semicoke. Proceeding of the CSEE 33:36–43.
  • Ma, D., B. T. Qin, S. Song, H. J. Liang, and A. Gao. 2017. An experimental study on the effects of air humidity on the spontaneous combustion characteristics of coal. Combust. Sci. Technol. 189:2209–19. doi:10.1080/00102202.2017.1368500.
  • Mudedla, S. K., C. V. S. Kumar, A. Suresh, P. Baskar, and P. S. Dansh. 2018. Water catalyzed pyrolysis of oxygen functional groups of coal: a density functional theory investigation. Fuel 233:328–35. doi:10.1016/j.fuel.2018.06.057.
  • Qu, Z. B., F. Sun, J. H. Gao, T. Pei, Z. P. Qie, and L. J. Wang. 2019. A new insight into the role of coal adsorbed water in low-temperature oxidation: Enhanced center dot OH radical generation. Combust. Flame 208:27–36. doi:10.1016/j.combustflame.2019.06.017.
  • Saffari, A., M. Ataei, and F. Sereshki. 2019. Examination of the role of moisture content on the spontaneous combustion of coal (SCC). Rudarsko-geološko-naftni Zbornik 34:3. doi:10.17794/rgn.
  • Saurabh, B., and K. A. Pradeep. 1996. The effect of moisture condensation on the spontaneous combustibility of coal. Fuel 75:1523–32. doi:10.1016/0016-2361(96)00121-4.
  • Shi, T., J. Deng, X. F. Wang, and Z. Y. Wen. 2004. Mechanism of spontaneous combustion of coal at initial stage. Fuel Chemi. Technol. 32:652–57.
  • Song, S., B. T. Qin, H. H. Xin, X. W. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Tang, Y. B., and S. Xue. 2017. Influence of long-term water immersion on spontaneous combustion characteristics of Bulianta bituminous coal. Int. J. Oil Gas Coal Technol. 14:398–411. doi:10.1504/IJOGCT.2017.083065.
  • Tang, Z. Q., C. Zhai, Q. L. Zhou, and L. Q. 2016. Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance. Fuel 186:571–78. doi:10.1016/j.fuel.2016.08.103.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wen, H., J. C. Xu, L. M. Ge, and J. Deng. 2001. Technique of measurement and test of coal spontaneous combustion characteristic and numerical analysis. J. Univ. Sci. Technol. Beijing 23:499–501.
  • Xie, G. X., Z. X. Hu, L. Q. Zhang, Y. Z. Tang, X. F. Jiang, and L. Wang. 2014. A proactive prevention method for controlling coal dilatancy in deep and gassy working face. J. China Univ. Min. Technol. 43:415–20.
  • Xu, T., D. Wang, and Q. He. 2013. The study of the critical moisture content at which coal has the most high tendency to spontaneous combustion. Int. J. Coal Prep. Util. 33:117–27. doi:10.1080/19392699.2013.769435.
  • Yu, J., A. Tahmasebi, Y. N. Han, F. K. Yin, and X. C. Li. 2013. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Process. Technol. 106:9–20. doi:10.1016/j.fuproc.2012.09.051.
  • Zhai, X. W., B. Wang, K. Wang, and D. Obracaj. 2019. Study on the influence of water immersion on the characteristic parameters of spontaneous combustion oxidation of low-rank bituminous coal. Combust. Sci. Technol. 191:1101–22. doi:10.1080/00102202.2018.1511544.
  • Zhang, K., Y. Li, Y. He, Z. H. Wang, Q. Li, M. Kuang, L. C. Ge, and K. F. Cen. 2018. Volatile gas release characteristics of three typical Chinese coals under various pyrolysis conditions. J. Energy Inst. 96:1045–56. doi:10.1016/j.joei.2017.07.004.
  • Zhang, W. D., Y. J. Zhao, S. Z. Sun, D. D. Feng, and P. F. Li. 2019. Effects of pressure on the characteristics of bituminous coal pyrolysis char formed in a pressurized drop tube furnace. Energy Fuels 33:12219–26. doi:10.1021/acs.energyfuels.9b02774.
  • Zhang, Y. T., D. X. Wang, and X. X. Zhong. 2007. Study on influence of water on low-temperature oxidation of coal. Saf. Coal Mines 38:1–4.
  • Zheng, X. Z., J. H. Lu, Y. Xiao, Y. H. Zhao, and Q. W. Li. 2014. Experimental study over the effect of high moisture on the coal spontaneous combustion characteristic parameters. J. Saf. Environ. 38:325–54.
  • Zhong, X. X., L. Kan, H. H. Xin, B. T. Q, and G. L. Dou. 2019. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion. Fuel 236:1204–12. doi:10.1016/j.fuel.2018.09.059.
  • Zhu, P., Z. P. Yu, J. L. Zhang, B. Dai, J. S. Zhang, P. Liang, and Z. P. Lei. 2017. Catalytic pyrolysis of bituminous coal under pyrolysis gas over a ni/mgo catalyst. Chem. Eng. Technol. 40:1605–10. doi:10.1002/ceat.v40.9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.