288
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on Explosion of Premixed Methane-air with Different Porosity and Distance from Ignition Position

, , &
Pages 2070-2084 | Received 22 Oct 2019, Accepted 06 Feb 2020, Published online: 14 Feb 2020

References

  • Baiquan, L., and Z. Cheng. 2006. Mechanism of gas explosion in coal exploitation and its preventive measures. J. Min. Saf. Eng ( in Chinese) 23:19–23.
  • Bjerketvedt, D., J. R. Bakke, and K. van Wingerden. 1997. Journal of hazardous materials: Gas explosion handbook. J. Hazard. Mater. 52:1–151. doi:10.1016/S0304-3894(97)81620-2.
  • Boyd, M. G., T. P. Marshall, F. J. Martin, and S. J. Noesen. 1981. Explosion pressures in enclosures compartmented by porous barriers. Symp. Combust. 18:1683–93. doi:10.1016/S0082-0784(81)80172-5.
  • Ciccarelli, G. 2012. Explosion propagation in inert porous media. Philos. Trans. A Math Phys. Eng. Sci 370:647–67. doi:10.1098/rsta.2011.0346.
  • Clanet, C., and G. Searby. 1996. On the “tulip flame” phenomenon. Combust. Flame 105:225–38. doi:10.1016/0010-2180(95)00195-6.
  • Dong, Z., B. Nie, W. Chao, Z. Fei, J. Guo, X. Liu, L. Qian, H. Li, and Z. Chen. 2011. Preliminary research on porous foam ceramics against gas explosions in goaf, International Symposium on Mine Safety Science & Engineering. doi: 10.1016/j.proeng.2011.11.2308
  • Jianhua, S., Z. Yi, W. Chunrong, X. Shang, and H. Donghui. 2011. The comparative experimental study of the porous materials suppressing the gas explosion. Procedia Eng. 26:954–60. doi:10.1016/j.proeng.2011.11.2262.
  • Jiwei, S., Z. Chunji, W. Zhirong, H. Yunan, and L. Wenting. 2018. Explosion suppression effect of ch4/air by combined porous materials in a container piping system. Explos. Shock Waves ( in Chinese) 38:905–12.
  • Ju-feng, Z., L. Xi-ming, M. A. Zhong-yuan, Y. Yun-yao, L. Jian-jun, Z. Hong-you, W. Ting-wei, and W. Shi-jie. 2011. Study on chain scission of gas explosion reaction in foam ceramics. Procedia Eng. 26:2369–75. doi:10.1016/j.proeng.2011.11.2447.
  • Korzhavin, A. A., V. A. Bunev, R. K. Abdullin, and V. S. Babkin. 1982. Flame zone in gas combustion in an inert porous medium. Combust. Explos. Shock Waves 18:628–31. doi:10.1007/BF00802281.
  • Minggao, Y., J. Wentao, W. Xiaoping, and L. Guo. 2013. Experimental study of the influence of staggered obstacles on gas explosion. J. China Univ. Min. Technol. (in Chinese) 42:349–54.
  • Miroshnichenko, T. P., N. S. Belyakov, and S. S. Minaev. 2015. Dynamics of gas combustion in a channel with combustion product flow through a porous wall. Combus. Explos. Shock Waves 51:293–98. doi:10.1134/S0010508215030028.
  • Nie, B., X. He, R. Zhang, W. Chen, and J. Zhang. 2011. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. J. Hazard. Mater. 192:741–47. doi:10.1016/j.jhazmat.2011.05.083.
  • Niu, Y., B. Shi, and B. Jiang. 2019. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks. Appl. Therm. Eng. 154:18–23. doi:10.1016/j.applthermaleng.2019.03.059.
  • Oliveira, A. A. M., and M. Kaviany. 2001. Nonequilibrium in the transport of heat and reactants in combustion in porous media. Prog. Energy Combust. Sci. 27:523–45. doi:10.1016/S0360-1285(00)00030-7.
  • Pang, L., C. Wang, M. Han, and Z. Xu. 2015. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy. J. Hazard. Mater. 299:174–80. doi:10.1016/j.jhazmat.2015.06.027.
  • Pei, B., J. Li, Y. Wang, X. Wen, M. Yu, and G. Jing. 2019. Synergistic inhibition effect on methane/air explosions by n2-twin-fluid water mist containing sodium chloride additive. Fuel 253:361–68. doi:10.1016/j.fuel.2019.05.035.
  • Peng, C., and S. Yongduo. 2017. Experiment study on quenching effect of foam metal on methane-air deflagration flame. J. Saf. Sci. Technol. (in Chinese) 13:37–41.
  • Wang, Y., S. Jiang, Z. Wu, H. Shao, K. Wang, and L. Wang. 2018. Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. J. Loss Prev. Process Ind. 56:451–57. doi:10.1016/j.jlp.2018.09.009.
  • Wei, C. R., X. U. Min-Qiang, J. H. Sun, Z. C. Gong, and R. Sun. 2012. Experiment and mechanism of porous materials for suppressing the gas explosion. J. Funct. Mater. 43:2247-2250+2255.
  • Wen, X., T. Su, Z. Liu, M. Xie, F. Wang, and Z. Liu. 2019. Numerical investigation on porous media quenching behaviors of premixed deflagrating flame using rans/les model. J. Therm. Sci. 28:780–88. doi:10.1007/s11630-019-1131-7.
  • Wen, X., M. Xie, M. Yu, G. Li, and W. Ji. 2013a. Porous media quenching behaviors of gas deflagration in the presence of obstacles. Exp. Therm. Fluid Sci. 50:37–44. doi:10.1016/j.expthermflusci.2013.05.002.
  • Wen, X., M. Yu, W. Ji, M. Yue, and J. Chen. 2015. Methane–air explosion characteristics with different obstacle configurations. Int, J. Min. Sci. Technol. 25:213–18. doi:10.1016/j.ijmst.2015.02.008.
  • Wen, X., M. Yu, Z. Liu, G. Li, W. Ji, and M. Xie. 2013b. Effects of cross-wise obstacle position on methane–air deflagration characteristics. J. Loss Prev. Process Ind. 26:1335–40. doi:10.1016/j.jlp.2013.08.006.
  • Xiao, H., Q. Wang, X. He, J. Sun, and X. Shen. 2011. Experimental study on the behaviors and shape changes of premixed hydrogen–air flames propagating in horizontal duct. Int. J. Hydrogen Energy 36:6325–36. doi:10.1016/j.ijhydene.2011.02.049.
  • Xing, Z. X., Y. G. Zhang, and G. L. Ma. 2012. Experimental research on explosion-protection performance of porous meshy aluminum alloy material. Adv. Mater. Res. 415-417:2087–92.
  • Yu, M., X. Yang, K. Zheng, L. Zheng, and S. Wan. 2018. Experimental study of premixed syngas/air flame propagation in a half-open duct. Fuel 225:192–202. doi:10.1016/j.fuel.2018.03.127.
  • Yulong, D., Z. Xinquan, G. Wu, J. Yucheng, and Y. Jianlei. 2010. Temperature distribution in lane-way air after mine methane explosions. J. China Univ. Min. Technol. (in Chinese) 39:318–23.
  • Yumin, S., L. Baiquan, Z. Chuanjie, L. Qian, and H. Yidu. 2013. Analysis on evolution characteristics of explosion waveform in a confined space. Min. Saf. Environ. Prot. (in Chinese) 40:14.
  • Zhang, J., Z. Sun, Y. Zheng, and Z. Su. 2012. Coupling effects of foam ceramics on the flame and shock wave of gas explosion. Saf. Sci. 50:797–800. doi:10.1016/j.ssci.2011.08.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.