261
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effects of n-Butanol Blends on the Formation of Hydrocarbons and PAHs from Fuel-Rich Heptane Combustion in a Micro Flow Reactor with a Controlled Temperature Profile

, ORCID Icon, , &
Pages 2085-2110 | Received 28 Jan 2019, Accepted 09 Feb 2020, Published online: 20 Feb 2020

References

  • Akih-kumgeh, B., and J. M. Bergthorson. 2010. Comparative study of methyl butanoate and n-heptane high temperature autoignition. Energy Fuels 24:2439–48. doi:10.1021/ef901489k.
  • Alexandrino, K., P. Salvo, Á. Millera, R. Bilbao, and M. U. Alzueta. 2016. Influence of the temperature and 2, 5-dimethylfuran concentration on its sooting tendency. Combust. Sci. Technol. 188 (4–5):651–66. doi:10.1080/00102202.2016.1138828.
  • Andreae, M. O. 2001. The dark side of aerosols. Nature 409:671–72. doi:10.1038/35055640.
  • Barfknecht, T. R. 1983. Toxicology of soot. Prog. Energy Combust. Sci. 9:199–237. doi:10.1016/0360-1285(83)90002-3.
  • Black, G., H. J. Curran, S. Pichon, J. M. Simmie, and V. Zhukov. 2010. Bio-butanol: Combustion properties and detailed chemical kinetic model. Combust. Flame. 157 (2):363–73. doi:10.1016/j.combustflame.2009.07.007.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. Deangelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552.
  • Braun-unkhoff, M., N. Hansen, T. Methling, K. Moshammer, and B. Yang. 2017. The influence of i -butanol addition to the chemistry of premixed 1, 3-butadiene flames. Proc. Combust. Inst. 36 (1):1311–19. doi:10.1016/j.proci.2016.05.029.
  • Cai, J., L. Zhang, F. Zhang, Z. Wang, Z. Cheng, W. Yuan, and F. Qi. 2012. Experimental and kinetic modeling study of n-butanol pyrolysis and combustion. Energy Fuels 26:5550–68. doi:10.1021/ef3011965.
  • Chen, B., X. Liu, H. Liu, H. Wang, D. C. Kyritsis, and M. Yao. 2017. Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. Combust. Flame. 177:123–36. doi:10.1016/j.combustflame.2016.12.012.
  • Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. 1998. A comprehensive modeling study of n-heptane oxidation. Combust. Flame. 114 (1):147–77. doi:10.1016/S0010-2180(97)00282-4.
  • Dagaut, P., S. M. Sarathy, and M. J. Thomson. 2009. A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. Proc. Combust. Inst. 32 (1):229–37. doi:10.1016/j.proci.2008.05.005.
  • Davidson, D. F., Z. Hong, G. L. Pilla, A. Farooq, R. D. Cook, and R. K. Hanson. 2010. Multi-species time-history measurements during n-heptane oxidation behind reflected shock waves. Combust. Flame. 157 (10):1899–905. doi:10.1016/j.combustflame.2010.01.004.
  • Davidson, D. F., M. A. Oehlschlaeger, and R. K. Hanson. 2007. Methyl concentration time-histories during iso-octane and n-heptane oxidation and pyrolysis. Proc. Combust. Inst. 31:321–28. doi:10.1016/j.proci.2006.07.087.
  • Dubey, A. K., T. Tezuka, S. Hasegawa, H. Nakamura, and K. Maruta. 2016. Study on sooting behavior of premixed C1–C4 n-alkanes/air flames using a micro flow reactor with a controlled temperature profile. Combust. Flame. 174:100–10. doi:10.1016/j.combustflame.2016.09.007.
  • Esarte, C., M. Abián, Á. Millera, R. Bilbao, and M. U. Alzueta. 2012. Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol. Energy 43:37–46. doi:10.1016/j.energy.2011.11.027.
  • Frassoldati, A., A. Cuoci, T. Faravelli, and E. Ranzi. 2010. Kinetic modeling of the oxidation of ethanol and gasoline surrogate mixtures. Combust. Sci. Technol. 182 (4–6):653–67. doi:10.1080/00102200903466368.
  • Frassoldati, A., R. Grana, T. Faravelli, E. Ranzi, P. Oßwald, and K. Kohse-Höinghaus. 2012. Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames. Combust. Flame. 159 (7):2295–311. doi:10.1016/j.combustflame.2012.03.002.
  • Ghiassi, H., P. Toth, and J. S. Lighty. 2014. Sooting behaviors of n-butanol and n-dodecane blends. Combust. Flame. 161 (3):671–79. doi:10.1016/j.combustflame.2013.10.011.
  • Glassman, I. 1988. Soot formation in combustion processes. Symp. Combust. 22 (1):295–311. doi:10.1016/S0082-0784(89)80036-0.
  • Golea, D., Y. Rezgui, M. Guemini, and S. Hamdane. 2012. Reduction of PAH and soot precursors in benzene flames by addition of ethanol. J. Phys. Chem. A 116:3625–42. doi:10.1021/jp211350f.
  • Grana, R., A. Frassoldati, T. Faravelli, U. Niemann, E. Ranzi, R. Seiser, R. Cattolica, and K. Seshadri. 2010. An experimental and kinetic modeling study of combustion of isomers of butanol. Combust. Flame. 157 (11):2137–54. doi:10.1016/j.combustflame.2010.05.009.
  • Green, D. A., and R. Lewis. 2007. Effect of soot on oil properties and wear of engine components. J. Phys. D Appl. Phys. 40:5488–501. doi:10.1088/0022-3727/40/18/S09.
  • Hafidzal, M., H. Nakamura, S. Hasegawa, T. Tezuka, and K. Maruta. 2018. Effects of n-butanol addition on sooting tendency and formation of C1-C2 primary intermediates of n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. Combust. Sci. Technol. 190:1–16.
  • Hakka, H. M., R. F. Cracknell, A. Pekalski, P. Glaude, and F. Battin-leclerc. 2015. Experimental and modeling study of ultra-rich oxidation of n-heptane. Fuel 144:358–68. doi:10.1016/j.fuel.2014.12.058.
  • Hansen, N., S. S. Merchant, M. R. Harper, and W. H. Green. 2013. The predictive capability of an automatically generated combustion chemistry mechanism: Chemical structures of premixed iso-butanol flames. Combust. Flame. 160 (11):2343–51. doi:10.1016/j.combustflame.2013.05.013.
  • Haynes, B. S., and H. G. Wagner. 1981. Soot formation. Prog. Energy Combust. Sci. 7:229–73. doi:10.1016/0360-1285(81)90001-0.
  • He, B.-Q., M.-B. Liu, J. Yuan, and H. Zhao. 2013. Combustion and emission characteristics of a HCCI engine fuelled with n-butanol–gasoline blends. Fuel 108:668–74. doi:10.1016/j.fuel.2013.02.026.
  • Herbinet, O., B. Husson, Z. Serinyel, M. Cord, V. Warth, R. Fournet, P. Glaude, B. Sirjean, and F. Battin-leclerc. 2012. Experimental and modeling investigation of the low-temperature oxidation of n-heptane. Combust. Flame. 159 (12):3455–71. doi:10.1016/j.combustflame.2012.07.008.
  • Hori, M., H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2013. Characteristics of n-heptane and toluene weak flames in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 34 (2):3419–26. doi:10.1016/j.proci.2012.06.099.
  • Hori, M., A. Yamamoto, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2012. Study on octane number dependence of PRF/air weak flames at 1-5 atm in a micro flow reactor with a controlled temperature profile. Combust. Flame. 159:959–67. doi:10.1016/j.combustflame.2011.09.020.
  • Ingemarsson, T., R. Pedersen, and J. O. Olsson. 1999. Oxidation of n-heptane in a premixed laminar flame. J. Phys. Chem. A 103:8222–30. doi:10.1021/jp984191s.
  • Jin, C., M. Yao, H. Liu, C. F. Lee, and J. Ji. 2011. Progress in the production and application of n-butanol as a biofuel. Renew. Sustain Energy Rev. 15 (8):4080–106. doi:10.1016/j.rser.2011.06.001.
  • Kamada, T., H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2014. Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile. Combust. Flame. 161:37–48. doi:10.1016/j.combustflame.2013.08.013.
  • Kikui, S., T. Kamada, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2015. Characteristics of n-butane weak flames at elevated pressures in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 35 (3):3405–12. doi:10.1016/j.proci.2014.07.029.
  • Kizaki, Y., H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2015. Effect of radical quenching on CH4/air flames in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 35 (3):3389–96. doi:10.1016/j.proci.2014.07.030.
  • Li, Y., W. Yuan, T. Li, W. Li, J. Yang, and F. Qi. 2018. Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol. Phys. Chem. 28:10628–36. doi:10.1039/C7CP08518D.
  • Liu, H., M. Huo, Y. Liu, X. Wang, H. Wang, Z. Li, M. Yao, and C. F. Lee. 2014. Time-resolved spray, flame, soot quantitative measurement fueling n-butanol and soybean biodiesel in a constant volume chamber under various ambient temperatures. Fuel 133:317–25. doi:10.1016/j.fuel.2014.05.038.
  • Liu, H., P. Zhang, X. Liu, B. Chen, C. Geng, B. Li, H. Wang, Z. Li, and M. Yao. 2018. Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n -butanol and DMF. Combust. Flame. 188:129–41. doi:10.1016/j.combustflame.2017.09.025.
  • Loparo, Z. E., J. G. Lopez, S. Neupane, W. P. Partridge, K. Vodopyanov, and S. S. Vasu. 2017. Fuel-rich n-heptane oxidation: A shock tube and laser absorption study. Combust. Flame. 185:220–33. doi:10.1016/j.combustflame.2017.07.016.
  • Mahmood, W. M. F. W. 2011. Computational studies of soot paths to cylinder wall layers of a direct injection diesel engine.
  • Maruta, K., T. Kataoka, K. N. Il, S. Minaev, and R. Fursenko. 2005. Characteristics of combustion in a narrow channel with a temperature gradient. Proc. Combust. Inst. 30 (2):2429–36. doi:10.1016/j.proci.2004.08.245.
  • Mckinnon, J. T., and J. B. Howard. 1992. The roles of PAH and acetylene in soot nucleation and growth. Symp. Combust. 24 (1):965–71. doi:10.1016/S0082-0784(06)80114-1.
  • Mehl, M., W. J. Pitz, C. K. Westbrook, and H. J. Curran. 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst. 33 (1):193–200. doi:10.1016/j.proci.2010.05.027.
  • Merola, S., C. Tornatore, L. Marchitto, G. Valentino, and F. E. Corcione. 2012. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine. Int. J. Energy Environ. Eng. 3:1–14. doi:10.1186/2251-6832-3-6.
  • Miyoshi, A. 2011. Systematic computational study on the unimolecular reactions of alkylperoxy (RO2), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O2QOOH) radicals. J. Phys. Chem A. 115:3301–25. doi:10.1021/jp112152n.
  • Nakamura, H., S. Suzuki, T. Tezuka, S. Hasegawa, and K. Maruta. 2015. Sooting limits and PAH formation of n-hexadecane and 2,2,4,4,6,8,8-heptamethylnonane in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 35 (3):3397–404. doi:10.1016/j.proci.2014.05.148.
  • Nakamura, H., H. Takahashi, T. Tezuka, S. Hasegawa, K. Maruta, and K. Abe. 2016. Effects of CO-to-H2 ratio and diluents on ignition properties of syngas examined by weak flames in a micro flow reactor with a controlled temperature profile. Combust. Flame. 172:94–104. doi:10.1016/j.combustflame.2016.06.024.
  • Nakamura, H., R. Tanimoto, T. Tezuka, S. Hasegawa, and K. Maruta. 2014. Soot formation characteristics and PAH formation process in a micro flow reactor with a controlled temperature profile. Combust. Flame. 161 (2):582–91. doi:10.1016/j.combustflame.2013.09.004.
  • Nielsen, T., H. E. Jsrgensen, J. C. Larsenb, and M. Poulsenb. 1996. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: Occurrence, sources and health effects. Sci. Total Environ. 189/190:41–49. doi:10.1016/0048-9697(96)05189-3.
  • Oshibe, H., H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2010. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile. Combust. Flame. 157 (8):1572–80. doi:10.1016/j.combustflame.2010.03.004.
  • Oßwald, P., H. Güldenberg, K. Kohse-höinghaus, B. Yang, T. Yuan, and F. Qi. 2011. Combustion of butanol isomers–A detailed molecular beam mass spectrometry investigation of their flame chemistry. Combust. Flame. 158:2–15. doi:10.1016/j.combustflame.2010.06.003.
  • Rakopoulos, D. C., C. D. Rakopoulos, E. G. Giakoumis, A. M. Dimaratos, and D. C. Kyritsis. 2010. Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers. Manag. 51 (10):1989–97. doi:10.1016/j.enconman.2010.02.032.
  • Randall, L. V. W., A. J. Kirk, and Y. C. Mun. 1997. Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame. Combust. Flame. 109 (3):399–414. doi:10.1016/S0010-2180(96)00189-7.
  • Richter, H., and J. B. Howard. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot–a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26 (4–6):565–608. doi:10.1016/S0360-1285(00)00009-5.
  • Ruiz, M. P., A. Callejas, A. Millera, M. U. Alzueta, and R. Bilbao. 2007. Soot formation from C2H2 and C2H4 pyrolysis at different temperatures. J. Anal. Appl. Pyrolysis. 79 (1–2):244–51. doi:10.1016/j.jaap.2006.10.012.
  • Russo, C., A. D’Anna, A. Ciajolo, and M. Sirignano. 2019. The effect of butanol isomers on the formation of carbon particulate matter in fuel-rich premixed ethylene flames. Combust. Flame. 199:122–30. doi:10.1016/j.combustflame.2018.10.025.
  • Saiki, Y., and Y. Suzuki. 2013. Effect of wall surface reaction on a methane-air premixed flame in narrow channels with different wall materials. Proc. Combust. Inst. 34:3395–402. doi:10.1016/j.proci.2012.06.095.
  • Sarathy, S. M., M. J. Thomson, C. Togbé, P. Dagaut, F. Halter, and C. Mounaim-Rousselle. 2009. An experimental and kinetic modeling study of n-butanol combustion. Combust. Flame. 156 (4):852–64. doi:10.1016/j.combustflame.2008.11.019.
  • Sarathy, S. M., S. Vranckx, K. Yasunaga, M. Mehl, P. Oßwald, W. K. Metcalfe, C. K. Westbrook, W. J. Pitz, K. Kohse-Höinghaus, R. X. Fernandes, et al. 2012. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame. 159 (6):2028–55. doi:10.1016/j.combustflame.2011.12.017.
  • Savard, B., H. Wang, A. Teodorczyk, and E. R. Hawkes. 2018. Low-temperature chemistry in n-heptane/air premixed turbulent flames. Combust. Flame. 196:71–84. doi:10.1016/j.combustflame.2018.05.029.
  • Seidel, L., K. Moshammer, X. Wang, T. Zeuch, K. Kohse-höinghaus, and F. Mauss. 2015. Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame. Combust. Flame. 162 (5):2045–58. doi:10.1016/j.combustflame.2015.01.002.
  • Seiser, R., H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran. 2000. Extinction and autoignition of n-heptane in counterflow configuration. Proc. Combust. Inst. 28:2029–37. doi:10.1016/S0082-0784(00)80610-4.
  • Sileghem, L., V. A. Alekseev, J. Vancoillie, K. M. Geem, E. J. K. Van Nilsson, S. Verhelst, and A. A. Konnov. 2013. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. Fuel 112:355–65. doi:10.1016/j.fuel.2013.05.049.
  • Smallbone, A. J., W. Liu, C. K. Law, X. Q. You, and H. Wang. 2009. Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of n-heptane. Proc. Combust. Inst. 32 (1):1245–52. doi:10.1016/j.proci.2008.06.213.
  • Suzuki, S., M. Hori, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2013. Study on cetane number dependence of diesel surrogates/air weak flames in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 34 (2):3411–17. doi:10.1016/j.proci.2012.06.162.
  • Tekawade, A., G. Kosiba, and M. A. Oehlschlaeger. 2016. Time-resolved carbon monoxide measurements during the low- to intermediate-temperature oxidation of n-heptane, n-decane, and n-dodecane. Combust. Flame. 173:402–10. doi:10.1016/j.combustflame.2016.08.009.
  • Togbé, C., A. M. Ahmed, and P. Dagaut. 2010. Kinetics of oxidation of 2-butanol and isobutanol in a jet-stirred reactor: Experimental study and modeling investigation. Energy Fuels 24:5244–56. doi:10.1021/ef1008488.
  • Tran, L., J. Pieper, M. Zeng, Y. Li, X. Zhang, W. Li, I. Graf, F. Qi, and K. Kohse-höinghaus. 2017. Influence of the biofuel isomers diethyl ether and n-butanol on flame structure and pollutant formation in premixed n-butane flames. Combust. Flame. 175:47–59. doi:10.1016/j.combustflame.2016.06.031.
  • Veloo, P. S., Y. L. Wang, F. N. Egolfopoulos, and C. K. Westbrook. 2010. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combust. Flame. 157 (10):1989–2004. doi:10.1016/j.combustflame.2010.04.001.
  • Wang, H., R. Deneys Reitz, M. Yao, B. Yang, Q. Jiao, and L. Qiu. 2013. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combust. Flame. 160 (3):504–19. doi:10.1016/j.combustflame.2012.11.017.
  • Westbrook, C. K., W. J. Pitz, and H. J. Curran. 2006. Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. J. Phys. Chem. A. 110:6912–22. doi:10.1021/jp056362g.
  • Yamamoto, A., H. Oshibe, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta. 2011. Stabilized three-stage oxidation of gaseous n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 33 (2):3259–66. doi:10.1016/j.proci.2010.05.004.
  • Yang, Z., Y. Wang, X. Yang, Y. Qian, X. Lu, and Z. Huang. 2014. Autoignition of butanol isomers/n-heptane blend fuels on a rapid compression machine in N2/O2/Ar mixtures. Sci. China Technol. Sci. 57 (3):461–70. doi:10.1007/s11431-014-5475-7.
  • Yao, C., C. Cheng, S. Liu, Z. Tian, and J. Wang. 2009. Identification of intermediates in an n-heptane/oxygen/argon low-pressure premixed laminar flame using synchrotron radiation. Fuel 88 (9):1752–57. doi:10.1016/j.fuel.2009.02.022.
  • Zhang, J., S. Niu, Y. Zhang, C. Tang, X. Jiang, E. Hu, and Z. Huang. 2013. Experimental and modeling study of the auto-ignition of n-heptane/n-butanol mixtures. Combust. Flame. 160 (1):31–39. doi:10.1016/j.combustflame.2012.09.006.
  • Zhang, J., L. Wei, X. Man, X. Jiang, Y. Zhang, E. Hu, and Z. Huang. 2012. Experimental and modeling study of n-butanol oxidation at high temperature. Energy Fuels 26:3368–80. doi:10.1021/ef3005042.
  • Zhang, K., C. Banyon, J. Bugler, H. J. Curran, A. Rodriguez, O. Herbinet, F. Battin-leclerc, C. B. Chir, and K. Alexander. 2016. An updated experimental and kinetic modeling study of n-heptane oxidation. Combust. Flame. 172:116–35. doi:10.1016/j.combustflame.2016.06.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.