429
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Combustion Characteristics of Suspended Hydrocarbon Fuel Droplets with Various Nanoenergetic Additives

, &
Pages 2111-2136 | Received 07 Oct 2019, Accepted 11 Feb 2020, Published online: 24 Feb 2020

References

  • Aggarwal, S. K. 2014. Single droplet ignition: Theoretical analyses and experimental findings. Prog. Energy Combust. Sci. 45:79–107. doi:10.1016/j.pecs.2014.05.002.
  • Agrawal, Y., and V. Patel. 2011. Nanosuspension: An approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res. 2 (2):81. doi:10.4103/2231-4040.82950.
  • Anton, N., J.-P. Benoit, and P. Saulnier. 2008. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J. Controlled Release 128 (3):185–99. doi:10.1016/j.jconrel.2008.02.007.
  • Armstrong, R. W., B. Baschung, D. W. Booth, and M. Samirant. 2003. Enhanced propellant combustion with nanoparticles. Nano Lett. 3 (2):253–55. doi:10.1021/nl025905k.
  • Badakhshan, A., J. W. Bennewitz, and D. Talley. 2018. New ignition methods for droplet combustion studies. Combust. Sci. Technol. 190 (7):1302–12. doi:10.1080/00102202.2018.1445726.
  • Bartle, K., E. Fitzpatrick, J. Jones, M. Kubacki, R. Plant, M. Pourkashanian, and A. Williams. 2011. The combustion of droplets of liquid fuels and biomass particles. Fuel 90 (3):1113–19. doi:10.1016/j.fuel.2010.10.054.
  • Basha, S. A., and K. R. Gopal. 2012. A review of the effects of catalyst and additive on biodiesel production, performance, combustion and emission characteristics. Renewable Sustainable Energy Rev. 16 (1):711–17. doi:10.1016/j.rser.2011.08.036.
  • Beckwith, T. G., and D., . M. Roy. 2007. Mechanical measurements. 6th ed. Upper Saddle River, NJ: Pearson Prentice Hall.
  • Bello, M. N., M. L. Pantoya, K. Kappagantula, W. S. Wang, S. A. Vanpalli, D. J. Irvin, and L. M. Wood. 2015. Reaction dynamics of rocket propellant with magnesium oxide nanoparticles. Energy & Fuels 29 (9):6111–17. 12.1021/acs.energyfuels.5b00905.
  • Bennewitz, J. W., A. Badakhshan, and D. G. Talley. 2019. Systematic measurement of hydrocarbon fuel droplet burning rate constants and ignition delays. J. Propul. Power 35 (4):690–703. doi:10.2514/1.b37195.
  • Bennewitz, J. W., D. Valentini, M. A. Plascencia, A. Vargas, H. S. Sim, B. Lopez, … A. R. Karagozian. 2018. Periodic partial extinction in acoustically coupled fuel droplet combustion. Combust. Flame 189:46–61. doi:10.1016/j.combustflame.2017.10.019.
  • Biswas, A., I. S. Bayer, A. S. Biris, T. Wang, E. Dervishi, and F. Faupel. 2012. Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Adv. Colloid Interface Sci. 170 (1–2):2–27. doi:10.1016/j.cis.2011.11.001.
  • Chartrand, R. 2011. Numerical differentiation of noisy, nonsmooth data. ISRN Appl. Math. 2011:1–11. doi:10.5402/2011/164564.
  • Chingunpituk, J. 2007. Nanosuspension technology for drug delivery. Walailak J. Sci. Technol. 4 (2):139–53.
  • Clark, J. D. 2018. Ignition!: An informal history of liquid rocket propellants. New Brunswick, N.J.: Rutgers University Press.
  • Deng, X., Z. Huang, W. Wang, and R. N. Davé. 2016. Investigation of nanoparticle agglomerates properties using monte carlo simulations. Adv. Powder Technol. 27 (5):1971–79. doi:10.1016/j.apt.2016.06.029.
  • Erbschloe, D. 2012. Air force alternative fuels process paves way to future (Tech. Rep.). Air Force Air Mobility Command, Sapphire Energy Report.
  • Faeth, G. 1977. Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3 (4):191–224. doi:10.1016/0360-1285(77)90012-0.
  • Ghamari, M., and A. Ratner. 2017. Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles. Fuel 188:182–89. doi:10.1016/j.fuel.2016.10.040.
  • Glassman, I., and R. Yetter. 2008. Combustion. 4th ed. San Diego, CA: Academic Press.
  • Godsave, G. 1953. Studies of the combustion of drops in a fuel spray—the burning of single drops of fuel. Symp. (Int.) Combust. 4 (1):818–30. doi:10.1016/s0082-0784(53)80107-4.
  • Guerieri, P. M., S. DeCarlo, B. Eichhorn, T. Connell, R. A. Yetter, X. Tang, Z. Hicks, K. H. Bowen, and M. R. Zachariah. 2015. Molecular aluminum additive for burn enhancement of hydrocarbon fuels. J. Phys. Chem. A 119 (45):11084–93. doi:10.1021/acs.jpca.5b08580.
  • Guerieri, P. M., J. B. DeLisio, and M. R. Zachariah. 2017. Nanoaluminum/nitrocellulose microparticle additive for burn enhancement of liquid fuels. Combust. Flame 176:220–28. doi:10.1016/j.combustflame.2016.10.011.
  • Harrje, D. 1972. Liquid propellant rocket combustion instability (Tech. Rep.). National Aeronautics and Space Administration.
  • Heister, S. D., W. E. Anderson, T. L. Pourpoint, and R. J. Cassady. 2019. Rocket propulsion. 1st ed. Cambridge, UK: Cambridge University Press.
  • Hwang, Y., J.-K. Lee, J.-K. Lee, Y.-M. Jeong, S. Ir Cheong, Y.-C. Ahn, and S. H. Kim. 2008. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 186 (2):145–53. doi:10.1016/j.powtec.2007.11.020.
  • Javed, I., S. W. Baek, and K. Waheed. 2015. Autoignition and combustion characteristics of kerosene droplets with dilute concentrations of aluminum nanoparticles at elevated temperatures. Combust. Flame 162 (3):774–87. doi:10.1016/j.combustflame.2014.08.018.
  • Jones, M., C. H. Li, A. Afjeh, and G. Peterson. 2011. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol). Nanoscale Res. Lett. 6 (1):246. doi:10.1186/1556-276x-6-246.
  • Kim, D. M., S. W. Baek, and J. Yoon. 2016. Ignition characteristics of kerosene droplets with the addition of aluminum nanoparticles at elevated temperature and pressure. Combust. Flame 173 (nov):106–13. doi:10.1016/j.combustflame.2016.07.033.
  • Kumagai, S., and H. Isoda. 1955. Combustion of fuel droplets in a vibrating air field. Symp. (Int.) Combust. 5 (1):129–32. doi:10.1016/s0082-0784(55)80019-7.
  • Law, C. 1982. Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci. 8 (3):171–201. doi:10.1016/0360-1285(82)90011-9.
  • Law, C., and F. Williams. 1972. Kinetics and convection in the combustion of alkane droplets. Combust. Flame 19 (3):393–405. doi:10.1016/0010-2180(72)90009-0.
  • Lu, A.-H., E. Salabas, and F.Schüth. 2007. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46 (8):1222–44. doi:10.1002/anie.200602866.
  • Mehregan, M., and M. Moghiman. 2018. Effects of nano-additives on pollutants emission and engine performance in a urea-SCR equipped diesel engine fueled with blended-biodiesel. Fuel 222 (jun):402–06. doi:10.1016/j.fuel.2018.02.172.
  • Meziani, M. J., C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, … Y.-P. Sun. 2009. Formation and properties of stabilized aluminum nanoparticles. ACS Appl. Mater. Interfaces 1 (3):703–09. doi:10.1021/am800209m.
  • Mirzajanzadeh, M., M. Tabatabaei, M. Ardjmand, A. Rashidi, B. Ghobadian, M. Barkhi, and M. Pazouki. 2015. A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions. Fuel 139 (jan):374–82. doi:10.1016/j.fuel.2014.09.008.
  • Mittal, A. K., Y. Chisti, and U. C. Banerjee. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31 (2):346–56. doi:10.1016/j.biotechadv.2013.01.003.
  • Pfeil, M., S. Rosen, Y. Yu, W. Anderson, and S. Son 2010. Effects of NanoAluminum on droplet combustion and combustion Instabilities in a single element rocket combustor. In 46th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. American Institute of Aeronautics and Astronautics, Nashville, TN. July doi:10.2514/6.2010-7154
  • Pfeil, M. A., L. J. Groven, R. P. Lucht, and S. F. Son. 2013. Effects of ammonia borane on the combustion of an ethanol droplet at atmospheric pressure. Combust. Flame 160 (10):2194–203. doi:10.1016/j.combustflame.2013.04.014.
  • Pfeil, M. A., S. F. Son, and W. E. Anderson. 2014. Influence of ammonia borane on the stability of a liquid rocket combustor. J. Propul. Power 30 (2):290–98. doi:10.2514/1.b34950.
  • Rayleigh, J. 1878. The explanation of certain acoustical phenomena. Nat. 18:319–21. doi:10.1038/018319a0.
  • Sabourin, J. L., D. M. Dabbs, R. A. Yetter, F. L. Dryer, and I. A. Aksay. 2009. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. ACS Nano 3 (12):3945–54. doi:10.1021/nn901006w.
  • Sabourin, J. L., R. A. Yetter, and V. S. Parimi. 2010. Exploring the effects of nanostructured particles on liquid nitromethane combustion. J. Propul. Power 26 (5):1006–15. doi:10.2514/1.48579.
  • Saidur, R., K. Leong, and H. Mohammad. 2011. A review on applications and challenges of nanofluids. Renewable Sustainable Energy Rev. 15 (3):1646–68. doi:10.1016/j.rser.2010.11.035.
  • Sim, H. S., M. A. Plascencia, A. Vargas, J. W. Bennewitz, O. I. Smith, and A. R. Karagozian. 2018. Effects of inert and energetic nanoparticles on burning liquid ethanol droplets. Combust. Sci. Technol. 191 (7):1079–100. doi:10.1080/00102202.2018.1509857.
  • Sim, H. S., M. A. Plascencia, A. Vargas, and A. R. Karagozian. 2019. Acoustically forced droplet combustion of liquid fuel with reactive aluminum nanoparticulates. Combust. Sci. Technol. 1–25. doi:10.1080/00102202.2019.1593971.
  • Sioui, R., and L. Roblee. 1969. The prediction of the burning constants of suspended hydrocarbon fuel droplets. Combust. Flame 13 (5):447–54. doi:10.1016/0010-2180(69)90083-2.
  • Sirignano, W. A. 2010. Fluid dynamics and transport of droplets and sprays. 2nd ed. Cambridge, NY: Cambridge University Press.
  • Soudagar, M. E. M., -N.-N. Nik-Ghazali, M. A. Kalam, I. Badruddin, N. Banapurmath, and N. Akram. 2018. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Convers. Manage. 178 (dec):146–77. doi:10.1016/j.enconman.2018.10.019.
  • Struk, P. M., M. Ackerman, V. Nayagam, and D. L. Dietrich. 1998. On calculating burning rates during fibre supported droplet combustion. Microgravity. Sc.i Technol. 11 (4):144–51.
  • Sutton, G. P., and O. Biblarz. 2010. Rocket propulsion elements. 8th ed. Hoboken, NJ: John Wiley & Sons, Inc.
  • Tang, F., L. Li, and D. Chen. 2012. Mesoporous silica nanoparticles: Synthesis, bio- compatibility and drug delivery. Adv. Mater. 24 (12):1504–34. doi:10.1002/adma.201104763.
  • Tanvir, S., and L. Qiao. 2015. Effect of addition of energetic nanoparticles on droplet- burning rate of liquid fuels. J. Propul. Power 31 (1):408–15. doi:10.2514/1.b35500.
  • Taylor, J. R. 1997. An introduction to error analysis: The study of uncertainties in physical measurements. 2nd ed. Sausalito, California: University Science Books.
  • Turns, S. R. 2000. An introduction to combustion: Concepts and applications. 8th ed. Boston, MA: McGraw-Hill Higher Education.
  • Tyagi, H., P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen. 2008, may. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett. 8 (5):1410–16. doi:10.1021/nl080277d.
  • USAF. 2006. Detail specification: Propellant, rocket grade kerosene. (Tech. Rep. No. MIL- DTL-25576E) United States Air Force.
  • Wood, B. J., and H. Wise. 1957. Measurement of the burning constant of a fuel drop. J. Appl. Phys. 28 (9):1068–1068. doi:10.1063/1.1722910.
  • Yetter, R. A., G. A. Risha, and S. F. Son. 2009. Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32 (2):1819–38. doi:10.1016/j.proci.2008.08.013.
  • Yu, Y., S. Koeglmeier, J. Sisco, and W. Anderson. 2008. Combustion instability of gaseous fuels in a continuously variable resonance chamber (CVRC). July doi:10.2514/6.2008-4657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.