350
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Development of Surface Reaction Mechanisms of CO / O2 on Pt and Rh for Three Way Catalyst based on Gas Phase and Surface Species Analyses

, , , , , , , & show all
Pages 2137-2157 | Received 26 Nov 2019, Accepted 14 Feb 2020, Published online: 27 Feb 2020

References

  • Almusaiteer, K. A., and S. S. C. Chuang. 2000. Infrared characterization of Rh surface states and their adsorbates during the NO−CO reaction. J. Phys. Chem. B 104:2265–72. doi:10.1021/jp9922155.
  • Boost. 0000. Boost, exhaust gas aftertreatment simulation. AVL LIST GmbH.
  • Bosch-Driebergen, A. G. V. D., M. N. H. Kieboom, A. V. Dreumel, R. M. Wolf, F. C. M. J. M. V. Van Delft, and B. E. Nieuwenhuys. 1989. Co oxidation over silica supported Pt-Rh alloy catalysts. Catal. Lett. 2:73–80. doi:10.1007/BF00774587.
  • Cai, Y., H. G. Stenger, Jr Jr., and C. E. Lyman. 1996. Catalytic CO oxidation over Pt–Rh/γ-Al2O3Catalysts. J. Catal. 161:123–31. doi:10.1006/jcat.1996.0169.
  • Chatterjee, D., O. Deutschmann, and J. Warnatz. 2001. Detailed surface reaction mechanism in a three-way catalyst. Royal Soc. Chem. 119:371–84.
  • Demoulin, O., M. Navez, and P. Ruiz. 2005. Investigation of the behaviour of a Pd/γ-Al2O3 catalyst during methane combustion reaction using in situ DRIFT spectroscopy. App. Cata. A 295:59–70. doi:10.1016/j.apcata.2005.08.008.
  • Deutschmann, O. 2015. Modeling of the interactions between catalytic surfaces and gas-phase. Catal. Lett. 145:272–89. doi:10.1007/s10562-014-1431-1.
  • Hayes, R. E., and S. T. Kolaczkowski. 1998. Introduction to catalytic combustion. USA: CRC press.
  • Hayes, R. E., S. T. Kolaczkowski, P. K. C. Li, and S. Awdry. 2000. Evaluating the effective diffusivity of methane in the washcoat of a honeycomb monolith. Appl. Catal. B 25:93–104. doi:10.1016/S0926-3373(99)00122-8.
  • Hinokuma, S., S. Matsuki, Y. Kawabata, H. Shimanoe, S. Kiritoshi, and M. Machida. 2016. Copper oxides supported on aluminum oxide borates for catalytic ammonia combustion. J. Phys. Chem. C 120:24734–42. doi:10.1021/acs.jpcc.6b07157.
  • Holmgren, A., B. Andersson, and D. Duprez. 1999. Interactions of CO with Pt/ceria catalysts. Appl. Cata. B 22:215–30. doi:10.1016/S0926-3373(99)00047-8.
  • Kalinkin, A. V., A. V. Pashis, and V. I. Bukhtiyarov. 2007. Reaction of CO oxidation on platinum, rhodium, a platinum-rhodium alloy, and a heterophase bimetallic platinum/rhodium surface. Kinet. Catal. 48 (2):298–304. doi:10.1134/S0023158407020152.
  • Kee, R. J., M. E. Coltrin, and P. Glarborg. 2003. Chemically Reacting Flow, 469. New Jersey, U.S.: Wiley & Sons, Inc.
  • Koltsakis, G. C. 1997. Catalytic automotive exhaust after treatment. Prog. Energy Combust. Sci. 23:1–39. doi:10.1016/S0360-1285(97)00003-8.
  • Koop, J., and O. Deutschmann. 2009. Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases. Appl. Cata. B 91:47–58. doi:10.1016/j.apcatb.2009.05.006.
  • Kota, A. S., R. K. Dadi, D. Luss, and V. Balakotaiah. 2017. Analysis of light-off during oxidation of reactant mixtures on Pt/Al2O3 using micro-kinetic models. Chem. Eng. Sci. 166:320–33. doi:10.1016/j.ces.2017.02.050.
  • Kummer, J. T. 1980. Catalysts for automobile emission control. Prog. Energy Combust. Sci. 6:177–99. doi:10.1016/0360-1285(80)90006-4.
  • Makeev, A. G., N. L. Semendyaeva, and M. M. Slinko. 2015. Synergetic effect and oscillatory behavior of CO oxidation over a bimetallic composite catalyst. Chem. Eng. J. 282:3–10. doi:10.1016/j.cej.2015.02.050.
  • Mladenov, N., J. Koop, S. Tischer, and O. Deutschmann. 2010. Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chem. Eng. Sci. 65:812–26. doi:10.1016/j.ces.2009.09.034.
  • Nibbelke, R. H., M. A. J. Campman, J. H. B. J. Hoebink, and G. B. Marin. 1997. Kinetic study of the CO Oxidation over Pt/γ-Al2O3and Pt/Rh/CeO2/γ-Al2O3in the Presence of H2O and CO2. J. Catal. 171:358–73. doi:10.1006/jcat.1997.1785.
  • Perry, R. H., D. W. Green, and J. O. Maloney. 0000. Perry’s chemical engineer’s handbook, 10–15. USA: Mc-Graw Hill.
  • Rankovic, N., A. Nicolle, D. Berthout, and P. D. Costa. 2011. Phys. Chem. 115:20225–36.
  • Roy, S., and A. K. Saroha. 2014. Kinetic Modeling Study of the Oxidation of Carbon Monoxide- Hydrogen Mixtures over Pt/Al2O3 and Rh/Al2O3 Catalysts. Roy. Soc. Chem. Adv. 4:56838–47.
  • Sasmaz, E., C. Wang, M. J. Lance, and J. Lauterbach. 2017. In situ spectroscopic investigation of Pd local structure over Pd/CeO2 and Pd/MnOx-CeO2 during CO oxidation. J. Mater. Chem. A 5:12998–3008. doi:10.1039/C7TA00696A.
  • Satsuma, A., and K. Shimizu. 2003. In situ FT/IR study of selective catalytic reduction of NO over alumina-based catalysts. Prog. Energy Combust. Sci. 29:71–84. doi:10.1016/S0360-1285(02)00033-3.
  • Sieder, E. N., and G. E. Tate. 1936. Heat Transfer and Pressure Drop of Liquids in Tubes. Ind. Eng. Chem. 28:1429–34. doi:10.1021/ie50324a027.
  • Stotz, H., L. Maier, and O. Deutschmann. 2017. Methane oxidation over palladium: on the mechanism in fuel-rich mixtures at high temperatures. Top. Catal. 60:83–109. doi:10.1007/s11244-016-0717-5.
  • Trautmann, S., and M. Baerns. 1994. Infrared spectroscopic studies of CO adsorption on rhodium supported by SiO2, Al2O3, and TiO2. J. Catal. 150:335–44. doi:10.1006/jcat.1994.1352.
  • Wakao, N., and J. M. Smith. 1962. Diffusion in catalyst pellets. Chem. Eng. Sci. 17:825–34. doi:10.1016/0009-2509(62)87015-8.
  • Xue, E., K. Seshan, and J. R. H. Ross. 1996. Roles of supports, Pt loading and Pt dispersion in the oxidation of NO to NO2 and of SO2 to SO3. App. Cat. B Environ. 11:65–79. doi:10.1016/S0926-3373(96)00034-3.
  • Zhao, R., Q. Hao, F. Bin, R. Kang, and B. Dou. 2017. Influence of Ce/Zr ratio on the synergistic effect over CuCe 1–xZr xO y/ZSM-5 catalysts for the self-sustained combustion of carbon monoxide. Com. Sci. Tech. 189:1394–415. doi:10.1080/00102202.2017.1297807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.