241
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Numerical Assessment of the Influences of the Coal Spontaneous Combustion on Gas Drainage Methods Optimization and Its Application

, , , , , & show all
Pages 2158-2174 | Received 27 Jan 2020, Accepted 14 Feb 2020, Published online: 20 Feb 2020

References

  • Balusu, R., and G. Deguchi. 2002. Gob gas flow mechanics and development of gas and spontaneous combustion control strategies at a highly gassy mine. Coal Saf. 20:35–45.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Saf. Environ. Prot. 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Di, Z., Ding, G., Zuo, S., Liu, R., Zhao, C. 1993. The theoretical calculation and observation analysis of the “Three Zones” in the gob of fully mechanized face with top coal drawing. J. China Univ. Min. Technol. 22 (1):8–16.
  • Gatnar, K., and A. Tor. 2003. Drainage and economic utilization of methane from coal seams in the Jastrzebie mining field. Appl. Energy 74:331–41. doi:10.1016/S0306-2619(02)00182-4.
  • Guo, Q., W. Ren, and L. Bai. 2019a. Properties of foamed gel for coal Ignition suppression in underground coal Mine. Combust. Sci. Technol. 191 (8):1294–308. doi:10.1080/00102202.2018.1523153.
  • Guo, Q., W. Ren, J. Zhu, J. Shi. 2019b. Study on the composition and structure of foamed gel for fireprevention and extinguishing in coal mines. Process Saf. Environ. Prot. 128:176–83. doi:10.1016/j.psep.2019.06.001.
  • Hu, S., Y. Huang, G. Feng, H. Shao, Q. Liao, Y. Gao, F. Hu. 2019. Investigation on the design of atomization device for coal dust suppression in underground roadways. Process Saf. Environ. Prot. 129:230–37. doi:10.1016/j.psep.2019.07.010.
  • Huang, Z., Z. Ma, S. Song, R. Yang, Y. Gao, and Y. Zhang. 2018. Study on the influence of periodic weighting on the spontaneous combustion “three-zone” in a gob. J. Loss Prev. Process Ind. 55:480–91. doi:10.1016/j.jlp.2018.07.020.
  • International Energy Agency. 2015. Medium-Term Coal Market Report 2015. Paris: Organisation for Economic Co-operation and Development.
  • Jia, H., H. Shen, H. Xiang, D. Li, and R. Zhai. 2019. Analysis of the fire-extinguishing effect and the weakening of flame intensification of nonionic liquid water mist. Combust. Sci. Technol. 1–13. doi:10.1080/00102202.2019.1596900.
  • Jiang, J. Y., Y.-P. Cheng, L. Wang, W. Li, L. Wang. 2011. Petrographic and geochemical effects of sill intrusions on coal and their implications for gas outbursts in the wolonghu mine, huaibei coalfield, china. Int. J. Coal Geol. 88(1):55–66. doi:10.1016/j.coal.2011.08.007.
  • Kong, S., Y. Cheng, T. Ren, H. Liu. 2014. A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief. Appl Energy 131:67–78. doi:10.1016/j.apenergy.2014.06.015.
  • Li, H., S. Shi, B. Lin, J. Lu, Q. Ye, Y. Lu, Z. Wang, Y. Hong, X. Zhu. 2019. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 187:115986. doi:10.1016/j.energy.2019.115986.
  • Li, Z. X. 2008a. Numerical simulation of coupling mechanism of coal spontaneous combustion and gas effusion in gob. J. China. Univ. Min. Techno. l37:38–42.
  • Li, Z. X. 2008b. CFD simulation of spontaneous coal combustion in irregular patterns of gob with multiple points of leaking air. J. China Univ. Min. Technol. 18:504–08. doi:10.1016/S1006-1266(08)60284-9.
  • Lin, B., H. Song, Y. Zhao, T. Liu, J. Kong, Z. Huang. 2019. Significance of gas flow in anisotropic coal seams to underground gas drainage. J. Pet. Sci. Eng. 180:808–19. doi:10.1016/j.petrol.2019.06.023.
  • Lu, Y. 2017. Laboratory study on the rising temperature of spontaneous combustion in coal stockpiles and a paste foam suppression technique. Energy Fuels 31 (7):7290–98. doi:10.1021/acs.energyfuels.7b00649.
  • Lu, Y., B. Qin. 2015. Mechanical properties of inorganic solidified foam for mining rock fracture filling. Mater Express 5(4):291–99. doi:10.1166/mex.2015.1244.
  • Lu, Y., S. Shi, H. Wang, Z. Tian, Q. Ye, H. Niu. 2019. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures. Int. J. Heat Mass Transf. 131:594–603. doi:10.1016/j.ijheatmasstransfer.2018.11.079.
  • Lu, Y., S. Shi, F. Yang, T. Zhang, H. Niu, T. Wang. 2018. Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium ion batteries. J. Alloys Compd. 767:23–33. doi:10.1016/j.jallcom.2018.07.068.
  • Lu, Y., T. Wang, Q. Ye. 2017. Study of the penetration and diffusion characteristics of inorganic solidified foam in rock fractures. Adv. Mater. Sci. Eng. 2017(1–10):3781560. doi:10.1155/2017/3781560.
  • Lv, Y., D. Tang, H. Xu, H. Luo. 2012. Production characteristics and the key factors in high-rank coalbed methane fields: A case study on the Fanzhuang Block, Southern Qinshui Basin, China. Int. J. Coal Geol. 96–97:93–108. doi:10.1016/j.coal.2012.03.009.
  • Ni, G., H. Xie, Z. Li, Z. Lingxun, and Y. Niu. 2018. Improving the permeability of coal seam with pulsating hydraulic fracturing technique: A case study in Changping coal mine, China. Process Saf. Environ. Prot. 117:565–72. doi:10.1016/j.psep.2018.06.001.
  • Qin, B., L. Li, D. Ma, Y. Lu, X. Zhong, Y. Jia. 2016. Control technology for the avoidance of the simultaneous occurrence of a methane explosion and spontaneous coal combustion in a coal mine: A case study. Process Saf. Environ. Prot. 103:203–11. doi:10.1016/j.psep.2016.07.005.
  • Ren, T. X. 1997. CFD modelling of methane flow around long-wall coal faces. Proceedings of the 6th International Mine Ventilation Congress, Pittsburgh, 17–22.
  • Shao, H. 2011. Bulking factor of the strata overlying the gob and a three dimensional numerical simulation of the air leakage flow field. Min. Sci. Technol. 21 (2):261–66.
  • Song, Y., and N. Wang. 2019. Exploring temporal and spatial evolution of global coal supply-demand and flow structure. Energy 168:1073–80. doi:10.1016/j.energy.2018.11.144.
  • Tang, Y., S. Si, X. Zhong. 2019b. Experimental investigation of the performance of an effective self-suctioning water mist generator for controlling underground coal fires. Process Saf. Environ. Prot. 126:98–105. doi:10.1016/j.psep.2019.03.038.
  • Tang, Y., and H. Wang. 2020. Laboratorial investigation and simulation test for spontaneous combustion characteristics of the coal waste under lean-oxygen atmosphere. Combust. Sci. Technol. 192 (1):46–61. doi:10.1080/00102202.2018.1555821.
  • Tang, Z., S. Yang, G. Xu, M. Sharifzadeh. 2019a. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars. Process Saf. Environ. Prot. 132:182–88. doi:10.1016/j.psep.2019.09.036.
  • Taraba, B., and Z. Michalec. 2011. Effect of longwall face advance rate on spontaneous heating process in the gob area-CFD modeling. Fuel 90 (8):2790–97. doi:10.1016/j.fuel.2011.03.033.
  • Teng, M., P. J. Burke, H. Liao. 2019. The demand for coal among China’s rural households: Estimates of price and income elasticities. Energy Econ. 80:928–36. doi:10.1016/j.eneco.2019.03.005.
  • Tian, Z., Y. Lu, S. Liu, S. Shi, H. Li, Q. Ye. 2019. Application of inorganic solidified foam to control the coexistence of unusual methane emission and spontaneous combustion of coal in the luwa coal mine, china. Combust. Sci. Technol. 1–19. doi:10.1080/00102202.2019.15903478.
  • Wang, G., Cheng, W., Zhou, G. 2010. Study on distribution of “Three zones” of gob spontaneous combustion in fully mechanized caving face. Min. Saf. Envir. Pro. 37:18–21.
  • Warlick, D. 2006. Gas shale and CBM development in North America. Oil. Gas. Financ. J. 3:1–5.
  • Wendt, M., and R. Balusu. 2002. CFD modeling of long wall gob gas flow dynamics. Coal Saf. 20:17–34.
  • World Energy Council. 2013. World energy resources: 2013 survey. London, UK: World Energy Council.
  • Xi, Z., X. Wang, X. Wang, L. Wang, D. Li, X. Guo, and L. Jin. 2018. Self-hardening thermoplastic foam for the inhibition of coal oxidation at low temperatures. Combust. Sci. Technol. 191 (11):1942–59. doi:10.1080/00102202.2018.1539967.
  • Xia, T. Q., F. Zhou, F. Gao, J. Kang, J. Liu, J. Wang. 2015. Simulation of coal self-heating processes in underground methane-rich coal seams. Int. J. Coal Geol. 141–142:1–12. doi:10.1016/j.coal.2015.02.007.
  • Xue, S., Y. Wang, J. Xie, G. Wang. 2011. A coupled approach to simulate initiation of outbursts of coal and gas model development. Int. J. Coal Geol. 86(2–3):222–30. doi:10.1016/j.coal.2011.02.006.
  • Yang, Y. L., Z. Li, Y. Tang, Z. Liu, H. Ji. 2014. Fine coal covering for preventing spontaneous combustion of coal pile. Nat. Hazards 74(2):603–22. doi:10.1007/s11069-014-1203-7.
  • Ye, Q., Z. Jia, C. Zheng. 2017. Study on hydraulic-controlled blasting technology for pressure relief and permeability improvement in a deep hole. J. Pet. Sci. Eng. 159:433–42. doi:10.1016/j.petrol.2017.09.045.
  • Ye, Q., G. Wang, Z. Jia, C. Zheng, W. Wang. 2018. Similarity simulation of mining-crack-evolution characteristics of overburden strata in deep coal mining with large dip. J. Pet. Sci. Eng. 165:477–87. doi:10.1016/j.petrol.2018.02.044.
  • Yuan, L., and A. C. Smith, 2008a. Effects of ventilation and gob characteristics on spontaneous heating in longwall gob areas. Proceedings of the 12th US/North American, 141–47.
  • Yuan, L. M., and A. C. Smith. 2008b. Numerical study on effects of coal properties on spontaneous heating in long wall gob areas. Fuel 87:3409–19. doi:10.1016/j.fuel.2008.05.015.
  • Yuan, L. M., and A. C. Smith. 2012. The effect of ventilation on spontaneous heating of coal. J. Loss Prev. Process Ind. 25 (1):131–37. doi:10.1016/j.jlp.2011.07.007.
  • Zhang, L., B. Shi, B. Qin, Q. Wu, and V. Dao. 2017. Characteristics of foamed gel for coal spontaneous combustion prevention and control. Combust. Sci. Technol. 189 (6):980–90. doi:10.1080/00102202.2016.1264942.
  • Zheng, C., B. Jiang, S. Xue, Z. Chen, H. Li. 2019. Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review. Process Saf. Environ. Prot. 127:103–24. doi:10.1016/j.psep.2019.05.010.
  • Zhou, H., Q. Yang, Y. Cheng, C. Ge, J. Chen. 2014. Methane drainage and utilization in coal mines with strong coal and gas outburst dangers: A case study in luling mine, china. J. Natural Gas Sci. Eng. 20(2):357–65. doi:10.1016/j.jngse.2014.07.023.
  • Zhu, H. Q., and X. K. Liu. 2012. Theoretical investigation on the relationship between tail roadway methane drainage and distribution of easily spontaneous combustible region in gob. Saf. Sci. 50 (4):618–23. doi:10.1016/j.ssci.2011.09.002.
  • Zhu, Y. 2006. Distribution of spontaneous combustion “Three zones” in fully mechanized gob under the conditions of gas drainage. J. Xi’an Univ. Sci. Technol. 6:15–19.
  • Zhu, Y. H., Tang, M. Y., Xia, S. B. 2011. Numerical simulation of distribution of spontaneous combustion “Three Zones” division in fully mechanized gob under complicated situation. Sci. Technol. Rev. 29 (12):67–70.
  • Zuber, M., and V. Kuuskraa. 1990. Optimizing well spacing and hydraulic-fracture design for economic recovery of coalbed methane. SPE Form. Eval. 5:98–102. doi:10.2118/17726-PA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.