241
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on fire behaviors in narrow bifurcated channel with a confined portal

, , , &
Pages 2194-2216 | Received 07 Nov 2019, Accepted 17 Feb 2020, Published online: 25 Feb 2020

References

  • Bradley, D., M. Lawes, S. Liao, and A. Saat. 2014. Laminar mass burning and entrainment velocities and flame instabilities of i-octane, ethanol and hydrous ethanol/air aerosols. Combust. Flame 161 (6):1620–32. doi:10.1016/j.combustflame.2013.12.011.
  • Chen, C. K., H. Xiao, N. N. Wang, C. L. Shi, C. X. Zhu, and X. Y. Liu. 2017. Experimental investigation of pool fire behavior to different tunnel-end ventilation opening areas by sealing. Tunnell. Underground Space Technol. 63:106–17. doi:10.1016/j.tust.2017.01.001.
  • Chen, C. K., C. X. Zhu, X. Y. Liu, and N. H. Yu. 2016. Experimental investigation on the effect of asymmetrical sealing on tunnel fire behavior. Int. J. Heat Mass Transf. 92:55–65. doi:10.1016/j.ijheatmasstransfer.2015.08.079.
  • Delichatsios, M. A. 1981. The flow of fire gases under a beamed ceiling. Combust. Flame 43:1–10. doi:10.1016/0010-2180(81)90002-x.
  • Du, T., D. Yang, S. Peng, and Y. Xiao. 2015. A method for design of smoke control of urban traffic link tunnel (UTLT) using longitudinal ventilation. Tunnell. Underground Space Technol. 48:35–42. doi:10.1016/j.tust.2015.02.001.
  • Fan, C. G., J. Chen, Y. Zhou, L. J. Li, J. Q. Zhang, M. H. Fan, and X. P. Liu. 2019. A simple method to improve smoke exhaust effectiveness of a shallow-buried urban tunnel fire with natural ventilation. Combust. Sci. Technol. 1–24. doi:10.1080/00102202.2019.1657102.
  • Fan, C. G., L. Zhang, S. C. Jiao, Z. W. Yang, M. H. Li, and X. P. Liu. 2018. Smoke spread characteristics inside a tunnel with natural ventilation under a strong environmental wind. Tunnel. Underground Space Technol. 82:99–110. doi:10.1016/j.tust.2018.08.004.
  • Hu, L. H., L. F. Chen, L. Wu, Y. F. Li, and N. Meng. 2013. An experimental investigation and correlation on buoyant gas temperature below ceiling in a slopping tunnel fire. Appl. Therm. Eng. 51 (1–2):246–54. doi:10.1016/j.applthermaleng.2012.07.043.
  • Hu, L. H., R. Huo, H. B. Wang, Y. Z. Li, and R. X. Yang. 2007. Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling. Build. Environ. 42 (11):3905–15. doi:10.1016/j.buildenv.2006.10.052.
  • Hu, L. H., Y. Z. Li, R. Huo, and H. B. Wang. 2016. Study of the transitional state between two wood crib burning regimes by CO concentration in a confined space. J. Fire Sci. 23:389–403. doi:10.1177/0734904105049225.
  • Huang, Y., Y. Li, B. Dong, J. Li, and Q. Liang. 2018. Numerical investigation on the maximum ceiling temperature and longitudinal decay in a sealing tunnel fire. Tunnel. Underground Space Technol. 72:120–30. doi:10.1016/j.tust.2017.11.021.
  • Ingason, H., and Y. Z. Li. 2010. Model scale tunnel fire tests with longitudinal ventilation. Fire Saf. J. 45 (6–8):371–84. doi:10.1016/j.firesaf.2010.07.004.
  • Ji, J., Y. B. Bi, K. Venkatasubbaiah, and K. Y. Li. 2016. Influence of aspect ratio of tunnel on smoke temperature distribution under ceiling in near field of fire source. Appl. Therm. Eng. 106:1094–102. doi:10.1016/j.applthermaleng.2016.06.086.
  • Ji, J., H. X. Wan, K. Y. Li, J. Y. Han, and J. H. Sun. 2015. A numerical study on upstream maximum temperature in inclined urban road tunnel fires. Int. J. Heat Mass Transf. 88:516–26. doi:10.1016/j.ijheatmasstransfer.2015.05.002.
  • Ji, J., W. Zhong, K. Y. Li, X. B. Shen, and R. Huo. 2011. A simplified calculation method on maximum smoke temperature under the ceiling in subway station fires. Tunnel. Underground Space Technol. 26 (3):490–96. doi:10.1016/j.tust.2011.02.001.
  • Karlsson, B., and J. Quintiere. 2000. Enclosure fire dynamics. Florida: CRC Press.
  • Kashef, A., Z. Yuan, and B. Lei. 2013. Ceiling temperature distribution and smoke diffusion in tunnel fires with natural ventilation. Fire Saf. J. 62:249–55. doi:10.1016/j.firesaf.2013.09.019.
  • Kayili, S., A. Yozgatligil, and O. C. Eralp. 2012. Effect of ventilation and geometrical parameters of the burning object on the heat release rate in tunnel fires. Combust. Sci. Technol. 184 (2):165–77. doi:10.1080/00102202.2011.625371.
  • Kim, J. H. J., Y. M. Lim, J. P. Won, and H. G. Park. 2010. Fire resistant behavior of newly developed bottom-ash-based cementitious coating applied concrete tunnel lining under RABT fire loading. Constr. Build. Mater. 24 (10):1984–94. doi:10.1016/j.conbuildmat.2010.04.001.
  • Kurioka, H., Y. Oka, H. Satoh, and O. Sugawa. 2003. Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Saf. J. 38 (4):319–40. doi:10.1016/S0379-7112(02)00089-9.
  • Li, J., Y. F. Li, C. H. Cheng, and W. K. Chow. 2019. A study on the effects of the slope on the critical velocity for longitudinal ventilation in tilted tunnels. Tunnel. Underground Space Technol. 89:262–67. doi:10.1016/j.tust.2019.04.015.
  • Li, Y. Z., and H. Ingason. 2012. The maximum ceiling gas temperature in a large tunnel fire. Fire Saf. J. 48:38–48. doi:10.1016/j.firesaf.2011.12.011.
  • Li, Y. Z., B. Lei, and H. Ingason. 2011. The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Saf. J. 46 (4):204–10. doi:10.1016/j.firesaf.2011.02.002.
  • Liu, C., M. H. Zhong, C. L. Shi, P. H. Zhang, and X. L. Tian. 2016. Temperature profile of fire-induced smoke in node area of a full-scale mine shaft tunnel under natural ventilation. Appl. Therm. Eng. 110:382–89. doi:10.1016/j.applthermaleng.2016.08.147.
  • Lönnermark, A., J. Hugosson, and H. Ingason. 2010. Fire incidents during construction work of tunnels-model-scale experiments, in SP report 2010, vol. 86. Boras, Sweden: SP Technical Research Institute of Sweden.
  • McCaffrey, B. J., and J. G. Quintiere. 1977. Buoyancy driven countercurrent flows generated by fire source. In Heat transfer and turbulent buoyant convection, ed. D. B. Spalding and N. Afgan, 457–72. Washington, USA: Hemisphere Publishing Co.
  • Oka, Y., and H. Kurioka. 2006. Effect of shape and size of a fire source on fire properties in vicinity of a fire source in a tunnel. Fire Sci. Technol. 25 (1):15–29. doi:10.3210/fst.25.15.
  • Quintiere, J. G. 1989. Scaling applications in fire research. Fire Saf. J. 15:3–29. doi:10.1016/0379-7112(89)90045-3.
  • Sakkas, K., N. Vagiokas, K. Tsiamouras, D. Mandalozis, A. Benardos, and P. Nomikos. 2019. In-situ fire test to assess tunnel lining fire resistance. Tunnell. Underground Space Technol. 85:368–74. doi:10.1016/j.tust.2019.01.002.
  • Seike, M., N. Kawabata, and M. Hasegawa. 2016. Experiments of evacuation speed in smoke-filled tunnel. Tunnel. Underground Space Technol. 53:61–67. doi:10.1016/j.tust.2016.01.003.
  • Sina, S., and Y. Ahmet. 2018. An analysis of tunnel fire characteristics under the effects of vehicular blockage and tunnel inclination. Tunnel. Underground Space Technol. 79:274–85. doi:10.1016/j.tust.2018.05.019.
  • Tang, F., Z. L. Cao, Q. Chen, N. Meng, Q. Wang, and C. G. Fan. 2017. Effect of blockage-heat source distance on maximum temperature of buoyancy-induced smoke flow beneath ceiling in a longitudinal ventilated tunnel. Int. J. Heat Mass Transf. 109:683–88. doi:10.1016/j.ijheatmasstransfer.2017.02.021.
  • Tang, F., Q. He, L. Chen, and P. C. Li. 2019. Experimental study on maximum smoke temperature beneath the ceiling induced by carriage fire in a tunnel with ceiling smoke extraction. Sustain. Cities Soc. 44:40–45. doi:10.1016/j.scs.2018.09.026.
  • Tang, F., Q. He, F. Z. Mei, Q. Shi, L. Chen, and K. H. Lu. 2018. Fire-induced temperature distribution beneath ceiling and air entrainment coefficient characteristics in a tunnel with point extraction system. Int. J. Therm. Sci. 134:363–69. doi:10.1016/j.ijthermalsci.2018.08.023.
  • Tomar, M. S., and S. Khurana. 2019. Impact of passive fire protection on heat release rates in road tunnel fire: a review. Tunnel. Underground Space Technol. 85:149–59. doi:10.1016/j.tust.2018.12.018.
  • Weng, M. C., X. L. Lu, F. Liu, and C. X. Du. 2016. Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation. Appl. Therm. Eng. 94:422–34. doi:10.1016/j.applthermaleng.2015.10.059.
  • Xu, Y., S. Liao, and M. Liu. 2018. Simulation and assessment of fire evacuation modes for long underwater vehicle tunnels. Fire Technol. 55:729–54. doi:10.1007/s10694-018-0798-8.
  • Yang, D., Y. Liu, C. Zhao, and S. Mao. 2017. Multiple steady states of fire smoke transport in a multi-branch tunnel: theoretical and numerical studies. Tunnel. Underground Space Technol. 61:189–97. doi:10.1080/00102202.2011.625371.
  • Yao, Y. Z., X. D. Cheng, L. Shi, S. G. Zhang, K. He, M. Peng, and H. P. Zhang. 2018a. Experimental study on the effects of initial sealing time on fire behaviors in channel fires. Int. J. Therm. Sci. 125:273–82. doi:10.1016/j.ijthermalsci.2017.11.031.
  • Yao, Y. Z., X. D. Cheng, S. G. Zhang, K. Zhu, H. P. Zhang, and L. Shi. 2017. Maximum smoke temperature beneath the ceiling in an enclosed channel with different fire locations. Appl. Therm. Eng. 111:30–38. doi:10.1016/j.applthermaleng.2016.08.161.
  • Yao, Y. Z., K. He, M. Peng, L. Shi, X. D. Cheng, and H. P. Zhang. 2018b. Maximum gas temperature rise beneath the ceiling in a portals-sealed tunnel fire. Tunnel. Underground Space Technol. 80:10–15. doi:10.1016/j.tust.2018.05.021.
  • Yao, Y. Z., Y. Z. Li, H. Ingason, and X. D. Cheng. 2019a. Numerical study on overall smoke control using naturally ventilated shafts during fires in a road tunnel. Int. J. Therm. Sci. 140:491–504. doi:10.1016/j.ijthermalsci.2019.03.016.
  • Yao, Y. Z., Y. Z. Li, A. Lönnermark, H. Ingason, and X. D. Cheng. 2019b. Study of tunnel fires during construction using a model scale tunnel. Tunnel. Underground Space Technol. 89:50–67. doi:10.1016/j.tust.2019.03.017.
  • Yi, L., X. Wang, R. Bu, S. Zhang, and Y. Zhou. 2019. A methodology for predicting temperature distribution inside concrete pavement under pool fire. Combust. Sci. Technol. 1–20. doi:10.1080/00102202.2019.1678594.
  • Zhao, S. Z., Y. Z. Li, M. Kumm, H. Ingason, and F. Liu. 2019. Re-direction of smoke flow in inclined tunnel fires. Tunnel. Underground Space Technol. 86:113–27. doi:10.1016/j.tust.2019.01.006.
  • Zhou, Y., R. Bu, J. Gong, and C. Fan. 2018. Experimental investigation on downward flame spread over rigid polyurethane and extruded polystyrene foams. Exp. Therm. Fluid Sci. 92:346–52. doi:10.1016/j.expthermflusci.2017.12.009.
  • Zhou, Y., R. Bu, J. Gong, Z. Geng, H. Fu, and L. Yi. 2019. Effect of ambient wind speed on pressure distribution and smoke movement in single and multiple compartment fires. Combust. Sci. Technol. 191:1354–79. doi:10.1080/00102202.2018.1527325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.