328
Views
11
CrossRef citations to date
0
Altmetric
Research Article

TimeScale Analysis, Numerical Simulation and Validation of Flame Acceleration, and DDT in Hydrogen–Air Mixtures

, &
Pages 2217-2240 | Received 22 Jun 2019, Accepted 17 Feb 2020, Published online: 05 Mar 2020

References

  • Boeck, L. R., F. M. Berger, J. Hasselberger, and T. Sattelmayer. 2016. Detonation propagation in hydrogen-air mixtures with transverse concentration gradients. Shock Waves 26:181. doi:10.1007/s00193-015-0598-8.
  • Boeck, L. R., J. Hasslberger, F. Ettner, and T. Sattelmayer. 2013. Investigation of peak pressures during explosive combustion of inhomogeneous hydrogen-air mixtures. Proceedings of the Seventh International Seminar on Fire & Explosion Hazards (ISFEH7), 959. Providence, Rhodes Island: Research Publishing.
  • Boeck, L. R., P. Katzy, J. Hasslberger, A. Kink, and T. Sattelmayer. 2015. The GraVent DDT database. Shockwaves 26:683.
  • Borghi, R. 1985. On the structure and morphology of turbulent premixed flames. In Recent advances in the aerospace sciences pages Springer, 117.
  • Breitung, W., C. Chan, S. Dorofeev, A. Eder, B. Gerland, M. Heitsch, R. Klein, A. Malliakos, J. Shepherd, E. Studer, et al. 2000. Flame acceleration and deflagration to detonation transition in nuclear safety. Technical Report OECD/NEA/CSNI/R 7.
  • Burke, M. P., M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein. 2014. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44:444. doi:10.1002/kin.20603.
  • Dinkelacker, F., B. Manickam, and S. Muppala. 2011. Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame 158:1742. doi:10.1016/j.combustflame.2010.12.003.
  • Ettner, F., K. G. Vollmer, and T. Sattelmayer. 2014. Numerical simulation of the deflagration-to-detonation transition in inhomogeneous mixtures. J. Combust. Article ID 686347, 1.
  • Gaathaug, A. V., K. Vaagsaether, and D. Bjerketvedt. 2012. Experimental and numerical investigation of DDT in hydrogen air behind a single obstacle. Int. J. Hydrogen Energy 37 (22):17606–15. doi:10.1016/j.ijhydene.2012.03.168.
  • Gamezo, V. N., T. Ogawa, and E. S. Oran. 2007. Numerical simulation of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture. Proc. Comb. Inst. 31:2463. doi:10.1016/j.proci.2006.07.220.
  • Gamezo, V. N., T. Ogawa, and E. S. Oran. 2008. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing. Combust. Flame 155:302. doi:10.1016/j.combustflame.2008.06.004.
  • Hasslberger, J., L. R. Boeck, and T. Sattelmayer. 2015. Numerical simulation of deflagration-to-detonation transition in large confined volumes. J. Loss Prev. Process Ind. 36:371. doi:10.1016/j.jlp.2014.11.018.
  • Hidaka, Y., K. Sato, Y. Henmi, H. Tanaka, and K. Inami. 1999. Shock-tube and modeling study of methane pyrolysis and oxidation. Combust. Flame 118:340. doi:10.1016/S0010-2180(99)00010-3.
  • Hong, Z., D. F. Davidson, and R. K. Hanson. 2011. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158:633. doi:10.1016/j.combustflame.2010.10.002.
  • Karanam, A., P. K. Sharma, and S. Ganju. 2018. Numerical simulation and validation of flame acceleration and DDT in hydrogen air mixtures. Int. J. Hydrogen Energy 43:36, 17492. doi:10.1016/j.ijhydene.2018.07.108.
  • Karanam, A., P. K. Sharma, S. Ganju, and R. K. Singh. 2016. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures. Kerntechnik 81:655. doi:10.3139/124.110589.
  • Khokhlov, A. M., and E. S. Oran. 1999. Adaptive mesh numerical simulation of deflagration-to- detonation transition: The dynamics of hot spots. AIAA-99-3439.
  • Khokhlov, A. M., E. S. Oran, and G. O. Thomas. 1999. Numerical simulation of deflagration-to-detonation transition: The role of shock–Flame interactions in turbulent flames. Combust. Flame 117:323. doi:10.1016/S0010-2180(98)00076-5.
  • Konnov, A. A. 2008. Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combust. Flame 152:507. doi:10.1016/j.combustflame.2007.10.024.
  • Lee, J. H. S. 2014. The detonation phenomenon. 1st ed. New York, USA: Cambridge University Press.
  • Leyse, M. 2014. Preventing hydrogen explosions in severe nuclear accidents. NRDC Report R:14-03-B.
  • Middha, P., and O. R. Hansen. 2008. Predicting deflagration to detonation transition in hydrogen explosions. Process Saf. Prog. 27 (3):192. doi:10.1002/prs.10242.
  • ÓConaire, M., H. J. Curran, J. M. Simmie, W. J. Pitz, and C. K. Westbrook. 2004. A comprehensive modeling study of hydrogen oxidation. Int.l J. Chem. Kinet. 36:603. doi:10.1002/kin.v36:11.
  • OpenFOAM. 2018. http://openfoam.org
  • Oran, E. S., and V. N. Gamezo. 2007. Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 148:4. doi:10.1016/j.combustflame.2006.07.010.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, et al. 1999. GRI-Mech 3.0. http://www.me.berkeley.edu/grimech/
  • Sun, C. J., C. J. Sung, L. He, and C. K. Law. 1999. Dynamics of weakly stretched flames: Quantitative description and extraction of global flame parameters. Combust. Flame 118:108. doi:10.1016/S0010-2180(98)00137-0.
  • Veynante, D., and L. Vervisch. 2002. Turbulent combustion modeling. Prog. Energy Combust. Sci. 28:193. doi:10.1016/S0360-1285(01)00017-X.
  • Weller, H. G. 1993. The development of a new flame area combustion model using conditional averaging. Thermo-Fluids Section Report, TF/9307, Imperial College.
  • Zeldovich, Y. B., V. B. Librovich, G. M. Makhviladze, and G. I. Sivashinskil. 1970. On the onset of detonation in a nonuniformly heated gas. J. Appl. Mech. Tech. Phys. 11:264. doi:10.1007/BF00908106.
  • Zimont, V. L. 2000. Gas premixed combustion at high turbulence. Turbulent flame closure combustion model. Exp. Therm. Fluid Sci. 21:179. doi:10.1016/S0894-1777(99)00069-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.