171
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulations on Autoignition Propagation Modes under Reciprocating Engine-relevant Conditions

, , , , &
Pages 2241-2258 | Received 05 Jul 2019, Accepted 17 Feb 2020, Published online: 23 Feb 2020

References

  • Bates, L., and D. Bradley. 2017a. Deflagrative, auto-ignitive, and detonative propagation regimes in engines. Combust. Flame 175:118–22. doi:10.1016/j.combustflame.2016.05.023.
  • Bates, L., D. Bradley, I. Gorbatenko, and A. S. Tomlin. 2017b. Computation of methane/air ignition delay and excitation times, using comprehensive and reduced chemical mechanisms and their relevance in engine autoignition. Combust. Flame 185:105–16. doi:10.1016/j.combustflame.2017.07.002.
  • Bhagatwala, A., J. H. Chen, and T. F. Lu. 2014. Direct numerical simulations of HCCI/SACI with ethanol. Combust. Flame 161:1826–41. doi:10.1016/j.combustflame.2013.12.027.
  • Bhagatwala, A., R. Sankaran, S. Kokjohn, and J. H. Chen. 2015. Numerical investigation of spontaneous flame propagation under RCCI conditions. Combust. Flame 162:3412–26. doi:10.1016/j.combustflame.2015.06.005.
  • Bradley, D., and G. T. Kalghatgi. 2009. Influence of auto-ignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame 156:2307–18. doi:10.1016/j.combustflame.2009.08.003
  • Burke, M. P., M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein. 2012. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44:444–74. doi:10.1002/kin.v44.7.
  • Chen, Z. 2011a. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame 158:291–300. doi:10.1016/j.combustflame.2010.09.001.
  • Chen, Z., M. P. Burke, and Y. Ju. 2011b. On the critical flame radius and minimum ignition energy for spherical flame initiation. Proc. Combust. Inst. 33:1219–26. doi:10.1016/j.proci.2010.05.005.
  • Dai, P., C. Qi, and Z. Chen. 2017. Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient. Proc. Combust. Inst. 36:3643–50. doi:10.1016/j.proci.2016.08.014.
  • Dai, P., C. Qi, and Z. Chen. 2017. Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient. Proc. Combust. Inst. 36:3643–50. doi: 10.1016/j.proci.2016.08.014.
  • Dai, P., Z. Chen, S. Chen, and Y. Ju. 2015. Numerical experiments on reaction front propagation in n–heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35:3045–52. doi:10.1016/j.proci.2014.06.102.
  • Dai, P., Z. Chen, S. Chen, and Y. Ju. 2015. Numerical experiments on reaction front propagation in n–heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35:3045–52. doi: 10.1016/j.proci.2014.06.102.
  • Dai, P., Z. Chen, and X. H. Gan. 2019. Autoignition and detonation development induced by a hot spot in fuel-lean and CO2 diluted n-heptane/air mixtures. Combust. Flame 201:208–14. doi:10.1016/j.combustflame.2018.12.020.
  • Gu, X., D. Emerson, and D. Bradley. 2003. Modes of reaction front propagation from hot spots. Combust. Flame 133:63–74. doi:10.1016/S0010-2180(02)00541-2.
  • Kalghatgi, G., I. Algunaibet, and K. Morganti. 2017. On knock intensity and superknock in si engines. SAE Int. J. Engines 10:1051–63. doi:10.4271/2017-01-0689.
  • Kalghatgi, G. T., and D. Bradley. 2012. Pre-ignition and ‘super-knock’ in turbo-charged spark-ignition engines. Int. J. Engine Res. 13:399–414. doi:10.1177/1468087411431890.
  • Lee, J. H., and I. O. Moen. 1980. The mechanism of transition from deflagration to detonation in vapor cloud explosions. Prog. Energy Combust. Sci. 6:359–89. doi:10.1016/0360-1285(80)90011-8.
  • Liberman, M. A., A. D. Kiverin, and M. F. Ivanov. 2011. On detonation initiation by a temperature gradient for a detailed chemical reaction models. Phys. Lett. A 375:1803–08. doi:10.1016/j.physleta.2011.03.026.
  • Liberman, M. A., A. D. Kiverin, and M. F. Ivanov. 2012. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models. Phys. Lett. E 85:056312.
  • Pan, J., G. Shu, and H. Wei. 2014. Interaction of flame propagation and pressure waves during knocking combustion in spark-ignition engines. Combust. Sci. Technol. 186:192–209. doi:10.1080/00102202.2013.857665.
  • Pan, J., H. Wei, G. Shu, M. Pan, D. Feng, and N. Li. 2017. LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine. Appl. Energy 191:183–92. doi:10.1016/j.apenergy.2017.01.044.
  • Pan, J., H. Wei, G. Shu, Z. Chen, and P. Zhao. 2016a. The role of low temperature chemistry in combustion mode development under elevated pressures. Combust. Flame 174:179–93. doi:10.1016/j.combustflame.2016.09.012.
  • Pan, J. Y., L. Chen, H. Q. Wei, D. Q. Feng, S. L. Deng, and G. Q. Shu. 2018. On autoignition mode under variable thermodynamic conditions of internal combustion engines. Int. J. Engine Res. Published Online. doi:10.1177/1468087418796617.
  • Pan, J. Y., P. Zhao, C. K. Law, and H. Q. Wei. 2016b. A predictive Livengood–Wu correlation for two-stage ignition. Int. J. Engine Res. 17:825–35. doi:10.1177/1468087415619516.
  • Pan, J. Y., S. Dong, H. Q. Wei, T. Li, G. Q. Shu, and L. Zhou. 2019a. Temperature gradient induced detonation development inside and outside a hotspot for different fuels. Combust. Flame 205:269–77. doi:10.1016/j.combustflame.2019.04.003.
  • Pan, J. Y., Z. Hu, H. Q. Wei, M. Z. Pan, L. Zhou, G. Shu, and L. Zhou. 2019b. Understanding strong knocking mechanism through high-strength optical rapid compression machines. Combust. Flame 202:1–15. doi:10.1016/j.combustflame.2019.01.004.
  • Qi, Y. L., Z. Wang, J. X. Wang, and X. He. 2015. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock. Combust. Flame 162:4119–28. doi:10.1016/j.combustflame.2015.08.016.
  • Robert, A., J. M. Zaccardi, C. Dul, A. Guerouani, and J. Rudloff. 2018. Numerical study of autoignition propagation modes in toluene reference fuel–air mixtures: Toward a better understanding of abnormal combustion in spark-ignition engines. Int. J. Engine Res.20: 734–745 1468087418777664.
  • Robert, A., S. Richard, O. Colin, and T. Poinsot. 2015. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combust. Flame 162:2788–807. doi:10.1016/j.combustflame.2015.04.010.
  • Rudloff, J., J. M. Zaccardi, and S. Richard. 2013. Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode. Proc. Combust. Inst. 34:2959–67. doi:10.1016/j.proci.2012.05.005.
  • Wang, H., M. F. Yao, and R. D. Reitz. 2013. Development of a reduced primary reference fuel (PRF) mechanism for IC engine combustion simulations. Energy Fuel 27:7843–53. doi:10.1021/ef401992e.
  • Wang, Z., H. Liu, and R. D. Reitz. 2017. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 61:78–112. doi:10.1016/j.pecs.2017.03.004.
  • Zeldovich, Y. B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39:211–14. doi:10.1016/0010-2180(80)90017-6.
  • Zhang, T. H., W. Q. Sun, L. Wang, and Y. G. Ju. 2019. Effects of low-temperature chemistry and turbulent transport on knocking formation for stratified dimethyl ether/air mixtures. Combust. Flame 200:342–53. doi:10.1016/j.combustflame.2018.12.001.
  • Zhang, T. H., W. Q. Sun, and Y. G. Ju. 2017. Multi-scale modeling of detonation formation with concentration and temperature gradients in n-heptane/air mixtures. Proc. Combust. Inst. 36:1539–47. doi:10.1016/j.proci.2016.06.192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.