334
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Ignition and Combustion Characteristics of Al/RDX/NC Nanostructured Microparticles

, , , &
Pages 2259-2275 | Received 16 Jul 2019, Accepted 19 Feb 2020, Published online: 27 Feb 2020

References

  • Bazyn, T., H. Krier, and N. Glumac. 2007. Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves. Combust. Flame 145:457–64.
  • Boggs, T. L. 1984. The thermal behavior of cyclotrimethylenetrinitramine (RDX) and cylclotetramethylenetetranitramine (HMX). In Fundamentals of Solid Propellant Combustion, Progress in Astronautics and Aeronautics, ed. K. K. Kuo and M. Summerfield, vol. 90, 121–75. New York, NY: American Institute of Aeronautics and Astronautics.
  • Brill, T. B., P. J. Brush, D. G. Patil, and J. K. Checn. 1992. Chemical pathways at a burning surface. Proc. Comb. Instit. 24:1907–14. doi:10.1016/S0082-0784(06)80224-9.
  • Brill, T. B., and P. E. Gongwer. 1997. Thermal decomposition of energetic materials 69. Analysis of the kinetics of nitrocellulose. Propellants Explos. Pyrotech. 22:38–44. doi:10.1002/prep.19970220109.
  • Brzustowski, T. A., and I. Glassman. 1964. Spectroscopic investigation of metal combustion. Prog. Astronaut. Aeronaut. 15:75.
  • Bucher, P., R. A. Yetter, F. L. Dryer, T. P. Parr, D. M. Hanson-Parr, and E. P. Vicenzi. 1996. Flame structure of single, isolated aluminum particles burning in air. Proc. Comb. Instit. 26:1899–908. doi:10.1016/S0082-0784(96)80012-9.
  • Chakraborty, P., and M. R. Zachariah. 2014. Do nanoenergetic particles remain nano-sized during combustion? Combust. Flame 161:1408–16. doi:10.1016/j.combustflame.2013.10.017.
  • Chen, J. K., and T. B. Brill. 1991. Thermal decomposition of energetic materials 50. Kinetics and mechanism of nitrate ester polymers at high heating rates by SMATCH/FTIR spectroscopy. Combust. Flame 85:479–88. doi:10.1016/0010-2180(91)90149-6.
  • Courty, L., J. F. Lagrange, P. Gillard, and C. Boulnois. 2018. Laser ignition of a low vulnerability propellant based on nitrocellulose: Effects of Ar and N2 surrounding atmospheres. Propellants Explos. Pyrotech. 43:986–91. doi:10.1002/prep.201800087.
  • Dokhan, A., E. W. Price, J. M. Seitzman, and R. K. Sigman. 2002. The effect of bimodal aluminum with ultrafine aluminum in the burning rates of solid propellants. Proc. Combust. Inst. 29:2939–45. doi:10.1016/S1540-7489(02)80359-5.
  • Egan, G. C., K. T. Sullivan, T. LaGrange, B. W. Reed, and M. R. Zachariah. 2014. In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates. J Appl Phys 115:084903. doi:10.1063/1.4867116.
  • Friedman, R., and A. Macek. 1962. Ignition and combustion of aluminum particles in hot ambient gases. Combust. Flame 6:9–19. doi:10.1016/0010-2180(62)90062-7.
  • Friedman, R., and A. Macek. 1963. Combustion studies of single aluminum particles. Proc. Comb. Instit. 9:703–09. doi:10.1016/S0082-0784(63)80078-8.
  • Galfetti, L., L. DeLuca, F. Severini, G. Colombo, L. Meda, and G. Marra. 2007. Pre and post-burning analysis of nano-aluminized solid rocket propellants. Aerosp. Sci. Technol. 11:26–32. doi:10.1016/j.ast.2006.08.005.
  • Gillard, P., L. Courty, S. De Persis, J. F. Lagrange, C. Boulnois, and I. Gokalp. 2018. Combustion properties of a low-vulnerability propellant: An experimental and theoretical study using laser ignition. J. Energetic Mater. 36 (3):362–74. doi:10.1080/07370652.2018.1439126.
  • Guerieri, P. M., J. B. DeLisio, and M. R. Zachariah. 2017. Nanoaluminum/nitrocellulose microparticle additive for burn enhancement of liquid fuels. Combust. Flame 176:220–28. doi:10.1016/j.combustflame.2016.10.011.
  • Huang, C., G. Jian, J. B. DeLisio, H. Wang, and M. R. Zachariah. 2015. Electrospray deposition of energetic polymer nanocomposites with high mass particle loadings: A prelude to 3D printing of rocket motors. Adv Eng Mater 17 (1):95–101. doi:10.1002/adem.201400151.
  • Hussain, G., and G. J. Rees. 1995. Thermal decomposition of RDX and mixtures. Fuel 74 (2):273–77. doi:10.1016/0016-2361(95)92665-S.
  • Jacob, R. J., B. Wei, and M. R. Zachariah. 2016. Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles. Combust. Flame 163:281–89.
  • Jiang, Z., S. F. Li, F. Q. Zhao, Z. R. Liu, C. M. Yin, Y. Luo, and S. W. Li. 2006. Research on the combustion properties of propellants with low content of nano metal powders. Propellants Explos. Pyrotech. 31:139–47. doi:10.1002/prep.200600021.
  • Kim, E. S., H. S. Lee, C. F. Mallery, and S. T. Thynell. 1997. thermal decomposition studies of energetic materials using confined rapid thermolysis. Combust. Flame 110:239–55. doi:10.1016/S0010-2180(97)00062-X.
  • Liau, Y. C., E. S. Kim, and V. Yang. 2001. A comprehensive analysis of laser-induced ignition of RDX monopropellant. Combust. Flame 126:1680–98. doi:10.1016/S0010-2180(01)00281-4.
  • Makashir, P. S., R. R. Mahajan, and J. P. Agrawal. 1995. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose, isothermal and non-isothermal techniques. J. Therm. Anal. 45:501–09. doi:10.1007/BF02548782.
  • McBride, B. J., and S. Gordon. 1996. Computer program for calculation of complex chemical equilibrium compositions and applications. Washington, DC: NASA.
  • Mott Peuker, J., P. Lynch, H. Krier, and N. Glumac. 2013. On alo emission spectroscopy as a diagnostic in energetic materials testing. Propellants Explos. Pyrotech. 38:577–85. doi:10.1002/prep.v38.4.
  • Price, E. W. 1984. Combustion of metalized propellants. In Fundamentals of solid propellant combustion, progress in astronautics and aeronautics, ed. K. K. Kuo and M. Summerfield, Vol. 90, 479–513. NewYork, NY: American Institute for Aeronautics and Astronautics, Inc.
  • Strakovskiy, L., A. Cohen, R. Fifer, R. Beyer, and B. Forch. 1998. Laser ignition of propellants and explosives. ARL-TR-1699, Aberdeen Proving Ground, MD: Army Research Laboratory. June.
  • Trunov, M. A., S. M. Umbrajkar, M. Schoenitz, J. T. Mang, and E. L. Dreizen. 2006. Oxidation and Melting of Aluminum Nanopowders. J. Phys. Chem. B 110 (26):13094–99. doi:10.1021/jp0614188.
  • Wang, H., R. J. Jacob, J. B. DeLisio, and M. R. Zachariah. 2017. Assembly and encapsulation of aluminum NP’s within AP/NC matrix and their reactive properties. Combust. Flame 180:175–83. doi:10.1016/j.combustflame.2017.02.036.
  • Wang, H., G. Jian, G. C. Egan, and M. R. Zachariah. 2014. Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combust. Flame 161:2203–08. doi:10.1016/j.combustflame.2014.02.003.
  • Wang, H., G. Jian, S. Yan, J. B. DeLisio, C. Huang, and M. R. Zachariah. 2013. Electrospray formation of gelled nano-aluminum microspheres with superior reactivity. ACS Appl Mater Interfaces 5:6797–801. doi:10.1021/am401238t.
  • Young, G., R. Jacob, and M. R. Zachariah. 2015a. High pressure ignition and combustion of aluminum hydride. Combust. Sci. Technol. 187:1335–50. doi:10.1080/00102202.2015.1038383.
  • Young, G., C. W. Roberts, and C. A. Stoltz. 2015b. Ignition and combustion enhancement of boron with polytetrafluoroethylene. J. Propul. Power 31:386–92. doi:10.2514/1.B35390.
  • Young, G., H. Wang, and M. R. Zachariah. 2015c. Application of nanoaluminum/nitrocellulose mesoparticles in composite solid rocket propellants. Propellants Explos. Pyrotech. 40 (3):413–18. doi:10.1002/prep.v40.3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.