250
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Investigating Catalytic Properties of Nanoferrites for Both AP and Nano-AP Based Composite Solid Propellant

, &
Pages 2290-2304 | Received 22 Jun 2019, Accepted 21 Feb 2020, Published online: 02 Mar 2020

References

  • Babuk, V. A., I. Dolotkazin, A. Gamsov, A. Glebov, L. T. DeLuca, and L. Galfetti. 2009. Nano-aluminum as a Solid Propellant Fuel. J. Propul. Power 25:482–89. doi:10.2514/1.36841.
  • Birks, L. S., and H. Friedman. 1946. Particle size determination from X-Ray line broadening. J. Appl. Phys. 17 (8):687–92. doi:10.1063/1.1707771.
  • Boldyrev, V. V. 2006. Thermal decomposition of ammonium perchlorate. Thermochim. Acta 443:1–36. doi:10.1016/j.tca.2005.11.038.
  • Cai, W., P. Thakre, and V. Yang. 2008. A model of AP/HTPB composite propellant combustion in rocket-motor environments. Combust. Sci. Technol. 180:2143–69. doi:10.1080/00102200802414915.
  • Chaturvedi, S., and P. N. Dave. 2012. Nano-metal oxide: Potentialcatalyst on thermal decomposition of ammonium perchlorate. J. Exp. Nanosci. 7 (2):205–31.
  • Chaturvedi, S., and P. N. Dave. 2015a. Solid propellants: AP/HTPB composite propellants. Arabian J. Chem. 1878-5352. doi:10.1016/j.arabjc.2014.12.033.
  • Chaturvedi, S., P. N. Dave, and N. N. Patel. 2015b. Thermal decomposition AP/HTPB Propellants in presence of Zn Nanoalloys. J. Appl. Nanoscie. 5 (1):201593–98.
  • Chen, T., P. Du, W. Jiang, J. Liu, G. Hao, H. Gao, L. Xiao, X. Ke, F. Zhao, and C. Xuan. 2016. A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate. RSC Adv. 6:83838–47. doi:10.1039/C6RA16448J.
  • Cheng, Y., Y. Li, S. Yan, and C. Huang. 2010. Deviation of activation energy caused by neglecting a temperature term in Ozawa Equation. J. Math. Chem. 48:704–13. doi:10.1007/s10910-010-9703-5.
  • Crump, J. E. 1968. Aluminum combustion in solid propellants. In Proceedings of the ICRPG=AIAA 3rd Solid Propulsion Conference. Atlantic City, NJ.
  • DeLuca, L. T., and L. Galfetti. 2008. Burning of Metallized Composite Solid Rocket Propellants: From Micrometric to Nanometric Aluminum Size. 4th Asian Joint Conference on Propulsion and Power. Gyeongju: Korea.
  • Dhumal, J., S. Bandgar, K. Zipare, and G. Shahane. 2015. Fe3O4 Ferrofluid Nanoparticles: Synthesis and Rheological Behavior. Int. J. Mater. Chem. Phys. 1 (2):141–45.
  • Gawande, M. B., A. Velhinho, I. D. Nogueira, C. A. A. Ghumman, O. M. N. D. Teodoro, and P. S. Branco. 2012. A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multi-component reactions a sustainable protocol. RSC Adv. 2:6144–49. doi:10.1039/c2ra20955a.
  • Hao, G., J. Liu, Q. Liu, L. Xiao, X. Ke, H. Gao, P. Du, W. Jiang, F. Zhao, and H. Gao. 2017. Facile Preparation of AP/Cu(OH)2 Core-Shell nanocomposites and its thermal decomposition behavior. Propellants Explos. Pyrotech. 42:947–52. doi:10.1002/prep.v42.8.
  • Hashim, M., Alimuddin, S. Kumar, B. H. Koo, S. E. Shirsath, E. M. Mohammed, J. Shah, R. K. Kotnala, H. K. Choi, H. Chung, et al. 2012. Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloys Compd. 518:11–18. doi:10.1016/j.jallcom.2011.12.017.
  • Ishitha, K., and P. A. Ramakrishna. 2014. Studies on the role of iron oxide and copper chromite in solid propellant combustion. Combust. Flame 10:2717–28. doi:10.1016/j.combustflame.2014.03.015.
  • Jacob, P. W. M., and H. M. Whitehead. 1969. Decomposition and combustion of ammonium perchlorate. Chem. Rev. 69:551–90. doi:10.1021/cr60260a005.
  • Jain, S., M. P. Mulay, Mehilal, P. P. Singh, and B. Bhattacharya. 2006. Prediction of particle size of ammonium perchlorate during pulverization. Def Sci J 56 (3):423–31. doi:10.14429/dsj.56.1909.
  • Joshi, S. S., P. R. Patil, and V. N. Krishnamurthy. 2008. Thermal decomposition of ammonium perchlorate in the present of nanosized ferric oxide. Def Sci J 58:721–27. doi:10.14429/dsj.58.1699.
  • Kanagesan, S., M. Hashim, S. Tamilselvan, N. B. Alitheen, I. Ismail, and G. Bahmanrokh. 2013. Cytotoxic effect of nanocrystalline MgFe2O4 particles for cancer cure. J. Nanomater. 2013:1–8. doi:10.1155/2013/865024.
  • Keenan, A. G., and R. F. Siegmund. 1969. Thermal decomposition of ammonium perchlorate. Q. Rev. Chem. Soc. 23:430–52. doi:10.1039/qr9692300430.
  • Kohga, M. 2008. Burning rate characteristics of ammonium perchlorate–based composite propellant using bimodal ammonium perchlorate. J. Propul. Power 24 (3):499–506. doi:10.2514/1.27107.
  • Kooti, M., and M. Afshari. 2012. Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes. Sci. Iranica 19:1991–95. doi:10.1016/j.scient.2012.05.005.
  • Krishna, S., and R. D. Swami. 1997. Effect of catalyst mixing procedure on subatmospheric combustion characteristics of composite propellants. J. Propul. Power 13:207–12. doi:10.2514/2.5171.
  • Kubota, N. 2007a. Combustion of composite propellants, in propellants and explosives. Thermochemical aspects of combustion. Weinheim, Germany: Wiley-VCH Verlag GmbH.
  • Kubota, N. 2007b. Propellants and explosives: Thermochemical aspects of combustion. 2nd ed. Weinheim, Germany: John Wiley & Sons.
  • Kumari, A., Mehilal, S. Jain, M. K. Jain, and B. Bhattacharya. 2013. Nano-ammonium perchlorate: Preparation, characterization, and evaluation in composite propellant formulation. J. Energetic Mater. 31:192–202. doi:10.1080/07370652.2012.694576.
  • Liu, W., Y. Xie, Q. Xie, K. Fang, X. Zhangc, and H. Chen. 2018. Dropwise cooling crystallization of ammonium perchlorate in gas–liquid two-phase suspension systems. Cryst. Eng. Comm. 20:6932–39. doi:10.1039/C8CE01389F.
  • Markova, I. 2010. Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt and nickel synthesized through borohydride reduction method (review). J. Chem. Technol. Metall. 45 (4):351–78.
  • Pang, W., L. DeLuca, X. Fan, F. Maggi, H. Xu, W. Xie, and X. Shi. 2015. Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. Combust. Sci. Technol. 188:150828071552002. doi:10.1080/00102202.2015.1083986.
  • Pradeep, A., P. Priyadharsini, and G. Chandrasekaran. 2008. Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 320 (21):2774–79. doi:10.1016/j.jmmm.2008.06.012.
  • Sajjada, M., I. Ullaha, M. I. Khanb, J. hanc, M. Y. Khana, and M. T. Qureshid. 2018. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. 9:1301–09. doi:10.1016/j.rinp.2018.04.010.
  • Sell, T., S. Vyazovkin, and C. A. Wight. 1999. Thermal decomposition kinetics of PBAN-binder and composite solid rocket propellants. Combust. Flame 119 (1):174–81. doi:10.1016/S0010-2180(99)00036-X.
  • Singh, G., I. P. S. Kapoor, and D. K. Pandey. 2002. Hexammine metal perchlorates as energetic burning rate modifiers. J. Energetic Mater. 20:223–44. doi:10.1080/07370650208244822.
  • Singh, G., I. P. S. Kapoor, and S. Dubey. 2009a. Bimetallic nanoalloys: Preparation, characterization and their catalytic activity. J. Alloys Compd. 480:270–74. doi:10.1016/j.jallcom.2009.02.024.
  • Singh, G., I. P. S. Kapoor, S. Dubey, and P. F. Siril. 2009b. Kinetics of thermal decomposition ofammonium perchlorate with nanocrystals of binary transition metal ferrites. Propell. Explo. Pyrotech. 34:72–77. doi:10.1002/prep.200900017.
  • Singh, G., I. P. S. Kapoor, S. Dubey, P. F. Siril, Y. J. Hua, F. Q. Zhao, and R. Z. Hu. 2008. Effect of mixed ternary transition metal ferrite nanocrystallites on thermal decomposition of ammmonium perchlorate. Thermochim. Acta 477 (1–2):42–47. doi:10.1016/j.tca.2008.08.005.
  • Starink, M. J. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta 404:163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Sutton, G. P., and O. Biblarz. 2001. Rocket propulsion elements. 7th ed. New York, NY: John Wiley & Sons.
  • Vyazovkin, S., A. K. Burnhamb, J. M. Criadoc, L. A. Perez-Maquedac, C. Popescud, and N. Sbirrazzuolie. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520:1–19. doi:10.1016/j.tca.2011.03.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.