252
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Coal Spontaneous Combustion by Thermodynamic Methods

, , &
Pages 2305-2330 | Received 18 Dec 2019, Accepted 22 Feb 2020, Published online: 02 Mar 2020

References

  • Achar, B. N. N., G. W. Brindley, and J. H. Sharp, 1966. Kinetics and mechanism of dehydroxylation processes, III, applications and limitations of dynamic methods. Proceedings of the 9th international Clay Conference, 67–73, Jerusalem, I.
  • Akahira, T., and T. Sunose. 1971. Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. 16:22–31.
  • Anca-Couce, A., A. Berger, and N. Zobel. 2014. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 123:230–40. doi:10.1016/j.fuel.2014.01.014.
  • Arisoy, A., and F. Akgün. 2000. Effect of pile height on spontaneous heating of coal stockpiles. Combust. Sci. Technol. 153 (1):157–68. doi:10.1080/00102200008947257.
  • Avrami, M. 1939. Kinetics of phase change. I—general theory. J. Chem. Phys. 7 (12):1103. doi:10.1063/1.1750380.
  • Booth, F. 1948. A note on the theory of surface diffusion reactions. Trans. Faraday Soc. 44:796–801. doi:10.1039/tf9484400796.
  • Brown, H. E. 1988. Introduction to thermal analysis: Techniques and applications. London: Chapman & Hall Ltd 127.
  • Brown, M. E. 1997. The Prout-Tompkins rate equation in solid-state kinetics. Thermochim. Acta 300 (1–2):93–106. doi:10.1016/S0040-6031(96)03119-X.
  • Chen, P., L. Zhang, and K. Huang. 2016. Kinetic modeling of coal thermal decomposition under air atmosphere. Energy & Fuels 30 (6):5158–66. doi:10.1021/acs.energyfuels.6b00902.
  • Coats, A. W., and J. P. Redfern. 1964. Kinetic parameters from thermogravimetric data. Nature 201:68–69. doi:10.1038/201068a0.
  • Criado, J. M., and A. Ortega. 1985. The accuracy of equation approximating the integral of the Arrhenius equation to perform the kinetic analysis of solid state reactions. Int. J. Chem. Kinet. 17:1365–73. doi:10.1002/kin.550171212.
  • Dai, G. L., D. M. Wang, and G. S. Zhang. 2003. Study on static oxygen absorption experiment of coal at normal temperature. J. Liaoning Tech. Univ. 22 (4):475–77. (in Chinese).
  • Deng, J., and J. C. Xu. 1999. The experimental study and numerical analysis of the shortest spontaneous combustion period of coal. J. China Coal Soc. 24 (3):274–78. (in Chinese).
  • Deng, J., Y. Yang, Y. N. Zhang, B. Liu, and C. M. Shu. 2018. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion. Energy 160:1174–85. doi:10.1016/j.energy.2018.07.040.
  • Ebrahimi-Kahrizsangi, R., and M. H. Abbasi. 2008. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans. Nonferrous Met. Soc. China 18:217–21. doi:10.1016/S1003-6326(08)60039-4.
  • Erofeev, B. V. 1946. Generalized equation of chemical kinetics and its application to reactions involving solid phase components. Ookl. Akad. Nauk. USSR 12:515–18.
  • Fan, S., and C. Sheng. 2016. Impact of inorganic matter on the low-temperature oxidation of cornstalk and cellulose chars. Energy & Fuels 30 (3):1783–91. doi:10.1021/acs.energyfuels.5b02287.
  • Flynn, J. H. 1997. The “Temperature Integral”—Its use and abuse. Thermochim. Acta 300 (1–2):83–92. doi:10.1016/S0040-6031(97)00046-4.
  • Flynn, J. H., and L. A. Wall. 1966. General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. 70A:487–523. doi:10.6028/jres.070A.043.
  • Friedman, H. L. 1963. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry-application to a phenolic plastic. J. Polym. Sci. 6:183–95.
  • Garner, W. E. 1955. Chemistry of the Solid State. London: Academic Press.
  • Geng, C., S. Li, C. Yue, and Y. Ma. 2016. Pyrolysis characteristics of bituminous coal. J. Energy Inst. 89 (4):725–30. doi:10.1016/j.joei.2015.04.004.
  • Ginstling, A. M., and B. I. Brounshtein. 1950. Concerning the diffusion kinetics of reactions in spherical spheres. J. Appl. Chem. 23:1327–38.
  • Hu, R. Z., S. L. Gao, F. Q. Zhao, Q. Z. Shi, T. L. Zhang, and J. J. Zhang. 2008. Thermal analysis kinetics, (in Chinese). Beijing: Science Press.
  • Hu, R. Z., Z. Q. Yang, and Y. J. Liang. 1988. A study of reaction between RDX and urea by a single non-isothermal DSC curve. Thermochim. Acta 134:429–34. doi:10.1016/0040-6031(88)85271-7.
  • Jander, W. 1927. Reaction in the solid state at high temperature. II. Reaction velocities of exothermic reactions. J. Inorg. Gen. Chem. 166:31–52.
  • Jones, J. C., P. S. Chiz, R. Koh, and J. Matthew. 1996. Kinetic parameters of oxidation of bituminous coals from heat-release rate measurements. Fuel 75 (15):1755–57. doi:10.1016/S0016-2361(96)00159-7.
  • Jones, J. C., K. P. Henderson, J. Littlefair, and S. Rennie. 1998. Kinetic parameters of oxidation of coals by heat-release measurement and their relevance to self-heating tests. Fuel 77 (1–2):19–22. doi:10.1016/S0016-2361(97)00155-5.
  • Kim, S., and Y. Eom. 2006. Estimation of kinetic triplet of cellulose pyrolysis reaction from isothermal kinetic results. Korean J. Chem. Eng. 23:409–14. doi:10.1007/BF02706742.
  • Kissinger, H. E. 1956. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57:217–21. doi:10.6028/jres.057.026.
  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. 29:1702–06. doi:10.1021/ac60131a045.
  • Kuenzer, C., and G. B. Stracher. 2012. Geomorphology of coal seam fires. Geomorphology 138:209–22. doi:10.1016/j.geomorph.2011.09.004.
  • Kuenzer, C., J. Zhang, A. Tetzlaff, P. van Dijk, S. Voigt, H. Mehl, and W. Wagner. 2007. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Appl. Geogr. 27 (1):42–62. doi:10.1016/j.apgeog.2006.09.007.
  • Li, B., G. Chen, H. Zhang, and C. Sheng. 2014. Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel 118:385–91. doi:10.1016/j.fuel.2013.11.011.
  • Li, Q. W., Y. Xiao, C. P. Wang, J. Deng, and C. M. Shu. 2019. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel 250:235–44. doi:10.1016/j.fuel.2019.04.003.
  • Li, Z. Q., W. Zhao, B. H. Meng, C. L. Liu, Q. Y. Zhu, and G. B. Zhao. 2008. Kinetic study of corn straw pyrolysis: Comparison of two different three-pseudo component models. Bioresour. Technol. 99:7616–22. doi:10.1016/j.biortech.2008.02.003.
  • Liang, Y. C., H. D. Liang, and S. Q. Zhu. 2012. Mercury emission from coal seam fire at Wuda, Inner Mongolia. China. Atmos. Environ. 83 (3):176–84. doi:10.1016/j.atmosenv.2013.09.001.
  • Lin, T. N., E. Goos, and U. Riedel. 2013. A sectional approach for biomass: Modelling the pyrolysis of cellulose. Fuel Process. Technol. 115:246–53. doi:10.1016/j.fuproc.2013.03.048.
  • Liu, J., J. Ma, L. Luo, H. Zhang, and X. Jiang. 2017. Pyrolysis of superfine pulverized coal. Part 5. Thermogravimetric analysis. Energy Convers. Manage. 154:491–502. doi:10.1016/j.enconman.2017.11.041.
  • Liu, J., J. R. wang, and B. Z. Sun. 1999. Theoretical research on activation energy of coal. J. Coal Sci. 24 (3):316–20. (in Chinese).
  • Lu, W. 2008. The method to identify rapidly the tendency of coal self-ignite based on oxygen consumption. J. Hunan Univ. Sci. Technol. 23 (1):15–18. (in Chinese).
  • Lu, W., D. M. Wang, X. X. Zhong, and F. B. Zhou. 2006. Tendency of spontaneous combustion of coal based on activation energy. J. China Univ. Min. Technol. 35 (2):201–05. (in Chinese).
  • MacCallum, J. R., and J. Tanner. 1970. The kinetics of thermogravimetry. Eur. Polym. J. 6:1033–39. doi:10.1016/0014-3057(70)90035-2.
  • Madhusudanan, P. M., K. K. Rishnan, and K. N. Ninan. 1986. New approximation for the p(x) function in the evaluation of nn-isothermal kinetic data. Thermochim. Acta 97:189–201. doi:10.1016/0040-6031(86)87019-8.
  • Mishra, G., J. Kumar, and T. Bhaskar. 2015. Kinetic studies on the pyrolysis of pinewood. Bioresour. Technol. 182:282–88. doi:10.1016/j.biortech.2015.01.087.
  • Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bull. Chem. Soc Jpn. 38:1881–86. doi:10.1246/bcsj.38.1881.
  • Popescu, C. 1996. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method. Thermochim. Acta 285 (2):309–23. doi:10.1016/0040-6031(96)02916-4.
  • Qi, X., Q. Li, H. Zhang, and H. Xin. 2017. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J. Energy Inst. 90 (4):544–55. doi:10.1016/j.joei.2016.05.007.
  • Slyusarskiy, K. V., K. B. Larionov, V. I. Osipov, S. A. Yankovsky, V. E. Gubin, and A. A. Gromov. 2017. Non-isothermal kinetic study of bituminous coal and lignite conversion in air and in argon/air mixtures. Fuel 191:383–92. doi:10.1016/j.fuel.2016.11.087.
  • Starink, M. J. 1996. A new method for the derivation of activation energies from experiments performed at constant heating rate. Therrnochim. Acta 288:97–104. doi:10.1016/S0040-6031(96)03053-5.
  • Starink, M. J. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta 404:163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Swann, P. D., D. J. Allardice, and D. G. Evans. 1974. Low-temperature oxidation of brown coal.1.Changes in internal surface due to oxidation. Fuel 53 (2):85–87. doi:10.1016/0016-2361(74)90060-X.
  • Valensi, G. 1950. Analysis of the methods of interpreting reactions of a gas with a solid to form another solid. J. Phys. Chem. Biol. Phys. Chem. 47:489–505.
  • Vand, V. 1943. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc. 55:222–46. doi:10.1088/0959-5309/55/3/308.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Perez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520:1–19. doi:10.1016/j.tca.2011.03.034.
  • Vyazovkin, S., K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Sunol. 2014. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 590:1–23. doi:10.1016/j.tca.2014.05.036.
  • Vyazovkin, S., and D. Dollimore. 1996. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J. Chem. Inf. Comput. Sci. 36:42–45. doi:10.1021/ci950062m.
  • Vyazovkin, S., and C. A. Wight. 1999. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 340/341:53–68. doi:10.1016/S0040-6031(99)00253-1.
  • Vyazovkin, S. V., and A. I. Lesnicovich. 1992. Practical application of isoconversional methods. Thermochim. Acta 203:177–85. doi:10.1016/0040-6031(92)85194-Z.
  • Wang, D. M. 2008. Mine fire science, (in Chinese). Beijing: China university of mining and technology press.
  • Wang, D. M., X. Y. Qi, X. X. Zhong, and J. J. Gu. 2009. Test method for the propensity of coal to spontaneous combustion. Procedia Earth Planet Sci. 1 (1):20–26. doi:10.1016/j.proeps.2009.09.006.
  • Wang, S. R., G. X. Dai, H. P. Yang, and Z. Y. Luo. 2017a. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 62:33–86. doi:10.1016/j.pecs.2017.05.004.
  • Wang, X. F., Y. Q. Sun, L. Li, J. R. Wang, and C. B. Deng. 2014. Research on the dynamic characteristics of coal combustion in double extrapolation. J. Saf. Sci. Technol. 10 (9):72–76. (In Chinese).
  • Wang, Y., Y. Song, K. Zhi, Y. Li, Y. Teng, R. He, and Q. Liu. 2017b. Combustion kinetics of Chinese Shenhua raw coal and its pyrolysis carbocoal. J. Energy Inst. 90 (4):624–33. doi:10.1016/j.joei.2016.04.011.
  • Wu, W., Y. Mei, L. Zhang, R. Liu, and J. Cai. 2015. Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste. Fuel 156:71–80. doi:10.1016/j.fuel.2015.04.016.
  • Yang, Y., Z. Li, Y. Tang, Z. Liu, and H. Ji. 2014. Fine coal covering for preventing spontaneous combustion of coal pile. Nat. Hazards 74 (2):603–22. doi:10.1007/s11069-014-1203-7.
  • Yang, Z. Q., R. Z. Hu, Y. J. Liang, and X. D. Li. 1986. The most available mechanism functions and kinetic parameters of the thermal decomposition of 2, 6-dinitrophenol were determined by a single non-isothermal DSC curve. J. Phys. Chem. 2 (1):13–21. (inChinese).
  • Zhong, X. X., L. D. Li, Y. Chen, G. L. Dou, and H. H. Xin. 2017. Changes in thermal kinetics characteristics during low-temperature oxidation of low-rank coals under lean-oxygen conditions. Energy Fuels 31:239−248. doi:10.1021/acs.energyfuels.6b02197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.