177
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation of the Influence of Vent Conditions on Hydrogen Flame Propagation

, , , , , , & show all
Pages 2331-2349 | Received 06 Jan 2020, Accepted 25 Feb 2020, Published online: 16 Mar 2020

References

  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2017. Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system[J]. J. Hazard. Mater. 339:301–09. doi:10.1016/j.jhazmat.2017.06.012.
  • Ajrash, M. J., J. Zanganeh, and B. Moghtaderi. 2018. Flame deflagration in side-on vented detonation tubes: A large scale study[J]. J. Hazard. Mater. 345:38–47. doi:10.1016/j.jhazmat.2017.11.014.
  • Bao, Q., Q. Fang, Y. Zhang, L. Chen, S. Yang, and Z. Li. 2016. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures[J]. Fuel 175(1):40–48. doi:10.1016/j.fuel.2016.01.084.
  • Bauwens, C. R., J. Chaffee, and S. B. Dorofeev. 2011. Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures[J]. Int. J. Hydrogen Energy 36 (3):2329–36. doi:10.1016/j.ijhydene.2010.04.005.
  • Bi, M. S., C. J. Dong, and Y. H. Zhou. 2012. Numerical simulation of methane air explosion flame in a long closed vessel[J]. J. China Coal Soc. 37 (1):129–33.
  • Chao, J., C. R. Bauwens, and S. B. Dorofeev. 2011. An analysis of peak overpressures in vented gaseous explosions[J]. Proc. Combust. Inst. 33 (2):2367–74. doi:10.1016/j.proci.2010.06.144.
  • Chen, C. H., Y. N. Sheen, and H. Y. Wang. 2016. Case analysis of catastrophic underground pipeline gas explosion in Taiwan[J]. Eng. Fail. Anal. 65:39–47. doi:10.1016/j.engfailanal.2016.03.013.
  • Clanet, C., and G. Searby. 1996. On the “tulip flame” phenomenon[J]. Combust. Flame 105 (1–2):225–38. doi:10.1016/0010-2180(95)00195-6.
  • Cui, Y. Y., Z. R. Wang, L. S. Ma, Y. Y. Zhen, and W. Sun. 2017. Influential factors of gas explosion venting in linked vessels[J]. J. Loss Prev. Process Ind. 46:108–14. doi:10.1016/j.jlp.2017.01.014.
  • Duan, Q. L., F. Zhang, T. Xiong, Q. Wang, H. Xiao, Q. Wang, W. Gao, L. Gong, K. Jin, J. Sun, et al. 2017. Experimental study of spontaneous ignition and non-premixed turbulent combustion behavior following pressurized hydrogen release through a tube with local enlargement[J]. J. Loss Prev. Process Ind. 49:814–21. doi:10.1016/j.jlp.2017.03.019.
  • Fan, W. P., Y. M. Gao, Y. M. Zhang, C. L. Chow, and W. K. Chow. 2019. Experimental studies and modeling on flame velocity in turbulent deflagration in an open tube[J]. Process Saf. Environ. Protect. 129:291–307. doi:10.1016/j.psep.2019.07.013.
  • Guo, Q., M. Wang, K. Gao, T. Zhao, and S. Sun. 2018. Experimental study and three-dimensional simulation of premixed combustible gas explosion venting in a rectangular cavity[J]. Explosion Shock 38 (5):1099–105.
  • Kasmani, R. M., G. E. Andrews, and H. N. Phylaktou. 2013. Experimental study on vented gas explosion in a cylindrical vessel with a vent duct[J]. Process Saf. Environ. Protect. 91 (4):245–52. doi:10.1016/j.psep.2012.05.006.
  • Lamoureux, N., N. Djebaili-chaumeix, and C. E. Paillard. 2002. Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method[J]. Exp. Ther. Fluid Sci. 27 (4):385–93. doi:10.1016/S0894-1777(02)00243-1.
  • Li, D., Q. Zhang, Q. J. Ma, and S. Shen. 2015. Comparison of explosion characteristics between hydrogen/air and methane/air at the stoichiometric concentrations[J]. Int. J. Hydrogen Energy. 40(28):8761–68. doi:10.1016/j.ijhydene.2015.05.038.
  • Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method[J]. Phys. Fluids 4 (4):633–35. doi:10.1063/1.858280.
  • Lv, X., L. Zheng, Y. Zhang, M. Yu, and Y. Su. 2016. Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen–air explosion[J]. Int. J. Hydrogen Energy. 41(39):17740–49. doi:10.1016/j.ijhydene.2016.07.263.
  • Nettleton, M. A. 1975. Pressure as a function of time and distance in a vented vessel[J]. Combust. Flame 24:65–77. doi:10.1016/0010-2180(75)90129-7.
  • Rocourt, X., S. Awamat, I. Sochet, and S. Jallais. 2014. Vented hydrogen–air deflagration in a small enclosed volume[J]. Int. J. Hydrogen Energy. 39(35):20462–66. doi:10.1016/j.ijhydene.2014.03.233.
  • Sarli, V. D., A. D. Benedetto, and G. Russo. 2009. Using large eddy simulation for understanding vented gas explosions in the presence of obstacles[J]. J. Hazard. Mater. 169 (1–3):435–42. doi:10.1016/j.jhazmat.2009.03.115.
  • Sutherland, W. 1893. LII. The viscosity of gases and molecular force[J]. Philos. Mag. 36:507–31.
  • Tomlin, G., D. M. Johnson, P. Cronin, H. N. Phylaktou, and G. E. Andrews. 2015. The effect of vent size and congestion in large-scale vented natural gas/air explosions[J]. J. Loss Prev. Process Ind. 35:169–81. doi:10.1016/j.jlp.2015.04.014.
  • Wan, S. J., M. G. Yu, K. Zheng, Y. Xu, C. Wang, and Z. Yuan. 2018. Influence of side venting position on methane/air explosion characteristics in an end-vented duct containing an obstacle[J]. Exp. Ther. Fluid Sci. 92:202–10. doi:10.1016/j.expthermflusci.2017.11.022.
  • Wang, S. M., Y. Du, G. Q. Li, S. Qi, P. Zhang, and W. Chen. 2018. Effect of vent size and the ignition source type on the internal overpressure loading of vented gasoline-air mixture explosion[J]. Explosion Shock 37 (1):23–31.
  • Xiao, H. H., Q. L. Duan, and J. H. Sun. 2018. Premixed flame propagation in hydrogen explosions[J]. Renewable Sustainable Energy Rev. 81 (2):1988–2001. doi:10.1016/j.rser.2017.06.008.
  • Xiao, H. H., X. B. Shen, and J. H. Sun. 2012. Experimental study and three-dimensional simulation of premixed hydrogen/air flame propagation in a closed duct[J]. Int. J. Hydrogen Energy 37 (15):11466–73. doi:10.1016/j.ijhydene.2012.05.006.
  • Yakhot, V., and S. A. Orszag. 1986. Renormalization group analysis of turbulence. 1-basic theory[J]. J. Sci. Comput. 1 (1):3–51. doi:10.1007/BF01061452.
  • Yang, K., Q. R. Hu, S. H. Sun, P. Lv, and L. Pang. 2019. Research progress on multi-overpressure peak structures of vented gas explosions in confined spaces[J]. J. Loss Prev. Process Ind. 62:103969. doi:10.1016/j.jlp.2019.103969.
  • Yin, W., G. Fu, C. Yang, Z. Jiang, K. Zhu, and Y. Gao. 2017. Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors: 2000–2014[J]. Saf. Sci. 92:173–79. doi:10.1016/j.ssci.2016.09.018.
  • Yu, M. G., K. Zheng, L. G. Zheng, T. Chu, and P. Guo. 2015. Effects of hydrogen addition on propagation characteristics of premixed methane/air flames [J]. J. Loss Prev. Process Ind. 34:19. doi:10.1016/j.jlp.2015.01.017.
  • Zheng, K., M. G. Yu, Y. P. Liang, L. Zheng, and X. Wen. 2018a. Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct[J]. Int. J. Hydrogen Energy. 43(7):3871–84. doi:10.1016/j.ijhydene.2018.01.045.
  • Zheng, K., M. G. Yu, L. G. Zheng, and X. Wen. 2018b. Comparative study of the propagation of methane/air and hydrogen/air flames in a duct using large eddy simulation[J]. Process Saf. Environ. Prot. 120:45–56. doi:10.1016/j.psep.2018.08.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.