301
Views
20
CrossRef citations to date
0
Altmetric
Research Article

An Artificial Intelligence-based Model for the Prediction of Spontaneous Combustion Liability of Coal Based on Its Proximate Analysis

, , &
Pages 2350-2367 | Received 28 Dec 2019, Accepted 26 Feb 2020, Published online: 12 Mar 2020

References

  • Arisoy, A., and B. Beamish. 2015. Reaction kinetics of coal oxidation at low temperatures. Fuel 159:412–17. doi:10.1016/j.fuel.2015.06.054.
  • ASTM, D5142. 2013. Standard test methods for proximate analysis of the analysis sample of coal and coke by instrumental procedures. West Conshohocken, PA: ASTM International. www.astm.org.
  • Banerjee, S. C. 2000. Prevention and combating mine fires, 33. New Delhi, India: Oxford and IBH Publishing Co. Pvt Ltd.
  • Dutta, S., and J. P. Gupta. 2010. PVT correlations for Indian crude using artificial neural networks. J. Pet. Sci. Eng. 72:93–109.
  • Eroglu, H. N., 1992. Factors affecting spontaneous combustion liability index. Ph.D. Thesis, University of the Witwatersrand Johannesburg, South Africa.
  • Feng, K. K., R. N. Chakravorty, and T. S. Cochrane. 1973. Spontaneous combustion - a coal mining hazard. IM Bull. 66 (783):75–84. October.
  • Genc, B., and A. Cook. 2015. Spontaneous combustion risk in South African coalfields. J. South Afr. Inst. Min. Metall. 115:563–68.
  • Genc, B., M. Onifade, and A. Cook. 2018. Spontaneous combustion risk on South African coalfields: Part 2. Proceedings of the 21st International Coal Congress of Turkey ‘ICCET’, 13–25. Zonguldak, Turkey, April 11–13.
  • Gevrey, M., I. Dimopoulos, and S. Lek. 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Modell 160 (3):249–64. doi:10.1016/S0304-3800(02)00257-0.
  • Gouws, M. J., and H. N. Eroglu. 1993. A spontaneous combustion liability index. The 13th Mining Congress of Turkey, 59–68. Istanbul.
  • Gouws, M. J., and L. Wade. 1989. The self-heating liability of coal: Predictions based on composites indices. Min. Sci. Technol. 9:81–85. doi:10.1016/S0167-9031(89)90797-4.
  • Kaymakci, E., and V. Didari. 2002. Relations between coal properties and spontaneous combustion parameters. Turk. J. Eng. Environ. Sci. 26 (1):59–64.
  • Lawal, A. I., and M. A. Idris. 2019. An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations. Int. J. Environ. Stud. 1–17. doi:10.1080/00207233.2019.1662186.
  • Mahadevan, V., and M. A. Ramlu. 1985. Fire risk rating of coal mines due to spontaneous heating. J. Mines Metal Fuels 33 (8):357–62.
  • Moghtaderi, B., B. Z. Dlugogorski, and E. M. Kennedy. 2000. Effects of wind flow on self-heating characteristics of coal stockpiles. Process Saf. Environ. Prot. 78 (6):445–53. doi:10.1205/095758200530998.
  • Mohalik, N. K., D. C. Panigrahi, and V. K. Singh. 2010. An investigation to optimise the experimental parameters of differential scanning calorimetry method to predict the susceptibility of coal to spontaneous. Arch. Min. Sci. 55:669–89.
  • Nguyen, H., X.-N. Bui, and H. Moayedi. 2019. A comparson of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine. Acta Geophys. 67 (4):1025–37. doi:10.1007/s11600-019-00304-3.
  • Nimaje, D. S., and D. P. Tripathy. 2016. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel 163:139–47. doi:10.1016/j.fuel.2015.09.041.
  • Nourani, V., and M. S. Fard. 2012. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv. Eng. Software 47 (1):127–46. doi:10.1016/j.advengsoft.2011.12.014.
  • Onifade, M. 2018. Spontaneous combustion liability of coals and coal-shales in the South African coalfields. A PhD Thesis, University of the Witwatersrand, Johannesburg, South Africa.
  • Onifade, M., A. I. Lawal, E. A. Aladejare, S. Bada, and M. A. Idris. 2019. Prediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysis. Int. J. Coal Pre. Util. 1–15. doi:10.1080/19392699.2019.1695605.
  • Onifade, M., and B. Genc. 2018a. A review of spontaneous combustion studies - South African context. Int. J. Min. Reclam. Environ. 33 (8):527–47. doi:10.1080/17480930.2018.1466402.
  • Onifade, M., and B. Genc. 2018b. Prediction of the spontaneous combustion liability of coal and coal-shale using statistical analysis. J. South Afr. Inst. Min. Metall. 118:799–808.
  • Onifade, M., and B. Genc. 2018c. Modelling spontaneous combustion liability of carbonaceous materials. Int. J. Coal Sci. Technol. 5 (2):191–212. doi:10.1007/s40789-018-0209-2.
  • Onifade, M., and B. Genc. 2018d. Comparative analysis of coal and coal-shale intrinsic factors affecting spontaneous combustion. Int. J. Coal Sci. Technol. 5 (3):282–94. doi:10.1007/s40789-018-0222-5.
  • Onifade, M., and B. Genc. 2019. Spontaneous combustion liability of coal and coal-shale- A review of prediction methods. Int. J. Coal Sci. Technol. 6 (2):151–68. doi:10.1007/s40789-019-0242-9.
  • Onifade, M., B. Genc, and A. Carpede. 2018. A new apparatus to establish the spontaneous combustion propensity of coals and coal-shales. Int. J. Min. Sci. Technol. 28 (4):649–55. doi:10.1016/j.ijmst.2018.05.012.
  • Onifade, M., B. Genc, and N. Wagner. 2019. Influence of organic and inorganic properties of coal-shale on spontaneous combustion liability. Int. J. Min. Sci. Technol. 29 (6):851–57. doi:10.1016/j.ijmst.2019.02.006.
  • Panigrahi, D. C., A. Ojha, N. C. Saxena, and B. K. Kejriwal, 1997. A study of coal oxygen interaction by using Russian U-Index and its correlation with basic constituents of coal with particular reference of Jharia coal field, International conference of safety in mines research institutes, New Delhi, India, pp. 134–41.
  • Panigrahi, D. C., and S. K. Ray. 2014. Assessment of self-heating susceptibility of indian coal seams - A neural network approach’. Arch. Min. Sci. 59 (4):1061–76. doi:10.2478/amsc-2014-0073.
  • Ren, T., J. Edwards, and D. Clarke. 1999. Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion. Fuel 78 (14):1611–20. doi:10.1016/S0016-2361(99)00107-6.
  • Rosema, A., H. Guan, and H. Veld. 2001. Simulation of spontaneous combustion to study the causes of coal fires in the Rujigou Basin. Fuel 80 (1):7–16. doi:10.1016/S0016-2361(00)00065-X.
  • Roy, D. H., and T. N. Singh. 2019. Predicting deformational properties of Indian coal: Soft computing and regression analysis approach. Measurement. doi:10.1016/j.measure-ment.2019.106975.
  • Sahu, H. B., D. C. Panigrahi, and N. M. Mishra, 2005. Assessment of spontaneous heating susceptibility of coal seams by experimental techniques: A comparative study. International symposium on advances in mining technology and management, 459–65. Kharagpur, India, November 29–December 2.
  • Singh, R. N., and S. Demirbilek. 1987. Statistical appraisal of intrinsic factors affecting spontaneous combustion of coal. Min. Sci. Technol. 4 (2):155–65. doi:10.1016/S0167-9031(87)90266-0.
  • Singh, R. V. K. 2013. Spontaneous heating and fire in coal mines’, in procedia engineering. doi:10.1016/j.proeng.2013.08.046.
  • Tang, Y., and S. Xue. 2015. Laboratory study on the spontaneous combustion propensity of lignite undergone heating treatment at low temperature in inert and low-oxygen environments. Energy and Fuels 29 (8):4683–89. doi:10.1021/acs.energyfuels.5b00217.
  • Wade, L., M. J. Gouws, and H. R. Phillips, 1987. An apparatus to establish the spontaneous combustion propensity of South African coals. Proceedings of the symposium on Safety in Coal Mines, CSIR, 7.1–7.2. Pretoria.
  • Yuan, L., and A. Smith. 2008. Numerical study on effects of coal properties on spontaneous heating in longwall gob areas. Fuel 87 (15–16):3409–19. doi:10.1016/j.fuel.2008.05.015.
  • Zhang, J., C. Wonyoung, I. Takamasa, T. Katsumi, and F. Masahiro. 2016. Modelling and parametric investigations on spontaneous heating in coal pile. Fuel 179:181–89. doi:10.1016/j.fuel.2016.02.059.
  • Zhang, Y. J., G. G. Wu, H. F. Xu, X. L. Meng, and G. Wang. 2009. Prediction of oxygen concentration and temperature distribution in loose coal based on BP neural network. Min. Sci. Technol. 19:0216–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.