313
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Analysis on the Changes of Functional Groups after Coal Dust Explosion at Different Concentrations Based on FTIR and XRD

, , &
Pages 2482-2504 | Received 09 Sep 2019, Accepted 19 Mar 2020, Published online: 08 Apr 2020

References

  • Bandopadhyay, A. K. 2010. Determination of quartz content for Indian coals using an FTIR technique International [J]. J. Coal Geol. 81 (81):73–78. doi:https://doi.org/10.1016/j.coal.2009.10.018.
  • C H, M., B. Maccoitir, H. Sattar, D. J. F. Slatter, H. N. Phylaktou, G. E. Andrews, B. M. Gibbs, et al. 2015a. Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1 m 3, dust explosion equipment [J]. Fuel. 151(1):91–101. doi:https://doi.org/10.1016/j.fuel.2015.01.009.
  • C H, Medina, H. Sattar, and Phylaktou H. N, et al. 2015. Explosion reactivity characterisation of pulverised torrefied spruce wood [j]. Journal of Loss Prevention in the Process Industries 36 (1):287–95.
  • C K, M., and M. L. Harris. 2014. Participation of large particles in coal dust explosions[J]. J. Loss Prev. Process Ind. 27 (1):49–54. doi:https://doi.org/10.1016/j.jlp.2013.11.004.
  • Cao, W G, S. Xu, J. Y. Liang. 2014. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion Shock. Wave 34 (5):586–93.
  • Cao, W., Q. Qin, W. Cao, Y. Lan, T. Chen, S. Xu, and X. Cao. 2017. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel[J]. Powder Technol. 310:17–23. doi:https://doi.org/10.1016/j.powtec.2017.01.019.
  • Cashdollar K L., Weiss E S., Montgomery T G and J. E. Going. 2007. Post-explosion observations of experimental mine and laboratory coal dust explosions [J]. J. Loss Prev. Process Ind. 20(4):607–15. doi:https://doi.org/10.1016/j.jlp.2007.04.013.
  • Chen F., W. Jiarui, Z. Bing, W. Hougang, L. Shuaidan, Q. Ling, C. Jian, and L. Xiaojiang. 2018. Transformation and Migration of minerals in Zhundong coal blended with oil shale [J]. Science Technology and Engineering (04):95–101.
  • Chen, Y., C. L D, M. Mastalerz, A. Schimmelmann, and A. Blandon. 2013. Mapping the chemistry of resinite, funginite and associated vitrinite in coal with micro‐FTIR [J]. J Microsc 249 (1):68–81.
  • Clarke, L. B. 1993. The fate of trace elements during coal combustion and gasification: An overview[J]. Fuel 72 (6):731–36. doi:https://doi.org/10.1016/0016-2361(93)90072-A.
  • Cuicui, Z. 2015. Study on the rule of composition and structure of organic small molecules and volatiles of macromolecules in all-rank coals [D]. China Univ. Min. Technol.
  • Cundi, W., M. Hongwen, Y. Dianfan, Y. Li, and A. Mikuni. 2005. Phase transformation for calcined coal measures Kailinite [J]. J. Chin. Ceram. Soc. 33 (1):77–81.
  • Feng, H., Z. Yanguo, M. Aihong, and L. Qinghai. 2014. FTIR analysis of yunnan lignite[J]. J. China Coal Soc. 39 (11):2293–2299.
  • Fernando Díaz A., E. González Ferradás, Teresa de jesús jiménez sánchez, et al. 2008. Consequence Analysis to Determine the Damage to Humans from Vapour Cloud Explosions Using Characteristic Curves [J]. Journal of Hazardous Materials 150 (1):146–152.
  • Gong, M., H. Li, and X. Jiang. 2016. A multi-objective optimization framework for ill-posed inverse problems. CAAI Transactions on Intelligence Technology 1 (3):225–40. doi:https://doi.org/10.1016/j.trit.2016.10.007.
  • J I, X.-Q., Y. Hui-Fang, and L. I. Wei. 2016. FTIR spectroscopic study on tectonically deformed coals in Hancheng mining area[J]. J. China Coal Soc. 2016, 41 (08):2050–2056.
  • Jifa, Q., L. Zhentang, H. Sen, L. Guanhua, L. Haoxiong, and L. Xuelong. 2018. Study on mineral features in coal dust explosion residues[J]. J. China Coal Soc. 43 (11):3145–53.
  • Jing N J, Wang Q H, Lou Z Y 2011. Effect of different reaction atmospheres on the sintering temperature of Jincheng coal ash under pressurized conditions[J]. Fuel. 90(8):2645–51. doi:https://doi.org/10.1016/j.fuel.2011.04.013.
  • Jingyu, J., Y. Weihua, C. Yuanping, L. Zhengdong, Z. Qiang, and K. Zhao. 2019. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel 239.
  • Joseph, I. V., G. Roncaglia, and A. M. Lubomira Tosheva. 2014. DoyleWaste peat ash mineralogy and transformation to microporous zeolites[J]. Fuel Process. Technol. 106124.
  • Karayiğit, A. I., C. Bircan, R. Maria Mastalerz, G. Oskay, N. XavierQuerol, and R. Lieberman. 2017. Ibrahim Türkmen Coal characteristics, elemental composition and modes of occurrence of some elements in the İsaalan coal (Balıkesir, NW Turkey)[J]. Int. J. Coal Geol. 172 (172):43–59. doi:https://doi.org/10.1016/j.coal.2017.01.016.
  • Kuai, N., W. Huang, J. Yuan, B. Du, Z. Li, and Y.Wu. 2011. Experimental investigations of coal dust-inert mixture explosion behaviors[J]. Procedia Eng. 26(4):1337–45. doi:https://doi.org/10.1016/j.proeng.2011.11.2309.
  • Kunecki, P., R. Panek, M. Wdowin, and W. Franus. 2017. Synthesis of faujasite (fau) and tschernichite (lta) type zeolites as a potential direction of the development of lime class C fly ash. International Journal of Mineral Processing 166:69–78.
  • Li, Q., B. Lin, H. Dai, S. Zhao, et al. 2012. Explosion characteristics of H₂/CH₄/air and CH₄/coal dust/air mixtures[J]. Powder Technol. 229:222–28. doi:https://doi.org/10.1016/j.powtec.2012.06.036.
  • Li, Q., C. Yuan, Q. Tao, Y. Zheng, Y. Zhao, et al. 2018b. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors[J]. Fuel 215:417–28. doi:https://doi.org/10.1016/j.fuel.2017.11.093.
  • Li, Q., K. Wang, Y. Zheng, M. Ruan, X. Mei, B. Lin, et al. 2016b. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust[J]. Powder Technol. 292:290–97. doi:https://doi.org/10.1016/j.powtec.2016.01.035.
  • Li, Q., K. Wang, Y. Zheng, X. Mei, B. Lin, et al. 2016a. Explosion severity of micro-sized aluminum dust and its flame propagation properties in 20 L spherical vessel[J]. Powder Technol. 301:1299–308. doi:https://doi.org/10.1016/j.powtec.2016.08.012.
  • Li, Q., Q. Tao, C. Yuan, Y. Zheng, G. Zhang, J. Liu, et al. 2018a. Investigation on the structure evolution of pre and post-explosion of coal dust using X-ray diffraction[J]. Int. J. Heat Mass Transfer 120:1162–72. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.137.
  • Limbach L K., Yuchun L I., Grass R N., T. J. Brunner, M. A. Hintermann, and M. Muller. 2005. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration,and diffusion at low concentrations[J]. Environ. Sci. Technol. 39(23):9370–76. doi:https://doi.org/10.1021/es051043o.
  • Lin, S., Z. Liu, E. Zhao, J. Qian, X. Li, Q. Zhang, and Muhammad Ali. 2019. A study on the FTIR spectra of pre- and post-explosion coal dust to evaluate the effect of functional groups on dust explosion. Process Safety and Environmental Protection 2019, (130):48–56.
  • Liu, Y H, R. Gupta, A. Sharma 2005. Mineral matter-organic matter association characterization by QEMSCAN and application in coal utilization[J]. Fuel. 54:1259–67.
  • Liu, Z., R. Guo, and X. I. Runze. 2014. Research of influence factors on characteristic parameters of coal dust explosion[J]. Ind. Mine Autom. 2014,040 (008):30–33.
  • Liu, Z., S. Lin, S. Zhang, E. Wang, and G. Liu (2016). Observations of microscopic characteristics of post-explosion coal dust samples. Journal of Loss Prevention in the Process Industries, S0950423016301747.
  • Liu, Z., S. Zhang, Z. H. Li, et al. 2015. Investigation on coal dust explosion residues using 20L explosion sphere vessels[J]. J. China Univ. Min. Technol. 44 (5):823–28.
  • Liu, Z., X. Li, J. Qian, S. Lin, S. Zhang, et al. 2017a. A study of the characteristics of gaseous and solid residues after coal dust explosions[J]. Combust. Sci. Technol. 189(9):6. doi:https://doi.org/10.1080/00102202.2017.1318857.
  • Liu, Z. T., S. Hong, S. S. Zhang, S. Lin, L. Qiu, S. Xia, R. Zhang, J. Qian, et al. 2017b. Experimental investigations on explosion behaviors of large-particle and formation rules of gas residues[J]. J. Loss Prev. Process Ind. 46:37–44. doi:https://doi.org/10.1016/j.jlp.2017.01.016.
  • Lu, L., V. Sahajwalla, C. Kong, D. Harris. 2001. Quantitative X-ray diffraction analysis and its application to various coals [J]. Carbon. 39(12):1821–33. doi:https://doi.org/10.1016/S0008-6223(00)00318-3.
  • Luan, J., M. Chai, L. Rundong, P.Yao, and A. Saood Khan. 2015. The mineral phase evolution behavior in the production of glass-ceramics from msw incineration fly ash by melting technology. Environmental Technology 37 (8):1–26.
  • Medina, C H, H. Sattar, P. H N, G. E. Andrews, B. M. Gibbs, et al. 2015b. Explosion reactivity characterisation of pulverised torrefied spruce wood [J]. J. Loss Prev. Process Ind. 36(1):287–95. doi:https://doi.org/10.1016/j.jlp.2014.12.009.
  • Medina,Brian, Clara Huéscar, and Slatter,Herodotos N. Phylaktou,Gordon E. Andrews,Bernard M. Gibbs. Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1m 3 dust explosion equipment[J]. Fuel,2015,151.
  • Mittal, M. 2013. Limiting oxygen concentration for coal dusts for explosion hazard analysis and safety[J]. J. Loss Prev. Process Ind. 26 (6):1106–12. doi:https://doi.org/10.1016/j.jlp.2013.04.012.
  • Presswood, S. M., S. M. Rimmer, K. B. Anderson, and J. Filiberto. 2016. Geochemical and petrographic alteration of rapidly heated coals from the Herrin (No. 6) Coal Seam, Illinois Basin[J]. Int. J. Coal Geol. 165 (165):243–56. doi:https://doi.org/10.1016/j.coal.2016.08.022.
  • Qian, J., Z. Liu, H. Liu, S. Hong, G. Liu, et al. 2019. Characterization of the products of explosions of varying concentrations of coal dust [J]. Combust. Sci. Technol. 191(7):236–1255. doi:https://doi.org/10.1080/00102202.2018.1519806.
  • Qian, J., Z. Liu, S. Lin. 2017. Characteristics analysis of post-explosion coal dust samples by X-ray diffraction[J]. Combust. Sci. Technol. 190 (1):1–15.
  • Qingrong, Z., Z. Fangui, and Z. Shitong. 2011. FT-IR study on structure evolution of middle maturate coals[J]. J. China Coal Soc. 36 (3):481–86.
  • Reifenstein A P., Kahraman H., Coin C D A., N. J. Calos, G. Miller, and P. Uwins. 1999. Behavior of selected minerals in an improved ash fusion test: Quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite[J]. Fuel. 78(12):1449–61. doi:https://doi.org/10.1016/S0016-2361(99)00065-4.
  • Rongshen, X. 2015. Behaviors of minerals in coal during the processes of thermal transformation. China Univ. Min. Technol. (Beijing).
  • Sapko, M J., E. S. Weiss, C. K L, I. A. Zlochower. 2000. Experimental mine and laboratory dust explosion research at NIOSH[J]. J. Loss Prev. Process Ind. 13(3–5):229–42. doi:https://doi.org/10.1016/S0950-4230(99)00038-8.
  • Seames, W. S. 2003. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion[J]. Fuel Process. Technol. 81 (2):109–25. doi:https://doi.org/10.1016/S0378-3820(03)00006-7.
  • Sen, H., L. Zhentang, Z. Enlai, L. Song, Q. Liming, Q. Jifa, L. Haoxiong, and X. Shankui. 2017. Comparison of behavior and microscopic characteristics of first and secondary explosions of coal dust[J]. J. Loss Prev. Process Ind. (49):382–94.
  • Shi-Ya, T., L. Jian, and G. Ke. 2015. Experimental study on shock wave impulse and pressure rise rate of gas explosion in closed pipeline[J]. China Saf. Sci. Technol,11 (8): 16–21.
  • Shuai, W., Y. Guochao, Z. Zhiqiang, et al. 2018. Molecular structure analysis of Jincheng anthracite coal[J]. J. China Coal Soc. 43 (2):555-562.
  • Smith, R. D. 1980. The trace element chemistry of coal during combustion and the emissions from coal-fired plants[J]. Prog. Energy Combust. Sci. 6 (1):53–119. doi:https://doi.org/10.1016/0360-1285(80)90015-5.
  • Song, L., L. Zhentang, Q. Jifa, and L. Xiaoliang. 2019b. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion[J]. Fuel . 2019, (251).
  • Song, L., L. Zhentang, Z. Enlai, Q. Jifa, L. Xiaoliang, Z. Qiming, and M. Ali. 2019a. A study on the FTIR spectra of pre-and post-explosion coal dust to evaluate the effect of functional groups on dust explosion[J]. Process Saf. Environ. Protect. (130):48–56.
  • Tahmasebi, A., J. Yu, and S. Bhattacharya. 2013. Chemical structure changes accompanying fluidized-bed drying of victorian brown coals in superheated steam, nitrogen, and hot air[J]. Energy Fuels 27 (1):154–66. doi:https://doi.org/10.1021/ef3016443.
  • Tao, G., Z. Mingxu, and X. Ma. 2017. XPS and FTIR spectroscopy characterization about the structure of coking coal in Xinyang[J]. Spectrosc. Spectral Anal. 37 (8):2406–11.
  • Vassilev S V and Tascon J M D. 2003. Methods for characterization of inorganic and mineral matter in coal: A critical overview[J]. Energy Fuel 17 (2):271–81. doi:https://doi.org/10.1021/ef020113z.
  • Weiguo, C., H. Liyuan, L. Jiyuan, M. Nan, R. Guoning, and P. Feng. 2014. Research on characteristic parameters of coal dust explosion in a spherical sealed container[J]. J. China Univ. Min. Technol. 43 (1):113–19.
  • Weiguo, C., W. Cao, Y. Peng, S. Qiu, N. Miao, and P. Feng. 2015. Experimental study on the combustion sensitivity parameters and pre-combusted changes in functional groups of lignite coal dust[J]. Powder Technol. 283: 512–18.
  • Wenbo, A., W. Laigui, L. Xiangfeng, P. Jiwei, and L. Xilin. 2018. Analysis the structural characteristics of fuxin long flame coal based on FTIR and XRD Experiments. Polym. Bull. (3):67–74.
  • Xi, X., S. Jiang, W. Zhang, K. Wang, H. Shao, and W. Zhengyan. 2019. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal[J]. Fuel 244.
  • Xinqiang, J., Y. Huifang, and L. Wei. 2016. Study on Infrared Spectrum Characteristics of Tectonic Coal in Hancheng Mining Area [J]. Journal of China Coal Society, 2016 (8): 2050–2056.
  • Yanyan, C., M. Mastalerz and Schimmelmann, A. 2012. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. Int. J. Coal Geol. (104):22–33.
  • Zhang, C., L. Rao, and T. Zhou. 2018. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts[J]. Combust. Sci. Technol. 190 (10):1850–60. doi:https://doi.org/10.1080/00102202.2018.1474877.
  • Zhang, K., Y. Cheng, W. Li, D. Wu, Z. Liu. 2017. Influence of supercritical CO2 on pore structure and functional groups of coal: Implications for CO2 sequestration[J]. J. Nat. Gas Sci. Eng. 40:288–98. doi:https://doi.org/10.1016/j.jngse.2017.02.031.
  • Zhang, L., Z. Li, Y. Yang, Y. Zhou, B. Kong, J. Li, J. H. Li, and L. L. Si. 2016. Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal[J]. Fuel 184:418–29. doi:https://doi.org/10.1016/j.fuel.2016.07.002.
  • Zheng, Y. P., C. G. Feng, G. X. Jing, X. M. Qian, X. J. Li, Z. Liu. et al. 2009. A statistical analysis of coal mine accidents caused by coal dust explosions? inChina. Journal of loss prevention in the process industries, 22 (4), 528–32.
  • Zhentang, L., L. Song, Z. Songshan, W. Enyuan, and L. Guanhua. 2016. Observations of microscopic characteristics of post-explosion coal dust samples[J]. J. Loss Prev. Process Ind. 43.
  • Zhentang, Liu, Zhang Songshan, and Xi Runze. 2015. Liu baobao. Lin Song.characteristics Of Residual Gas from Coal Dust Explosion in Confined Space [J] .Journal Of China Coal Society 40 (07):1574–1579.
  • Zhi, L. 2006. The study on minerals transition process and fusing regularity of blending coal-ashes [D]. Zhejiang University
  • Zodrow, E. L., M. Mastalerz, U. Werner-Zwanziger, & J. A. D’Angelo. 2010. Medullosalean fusain trunk from the roof rocks of a coal seam: Insight from FTIR and NMR (Pennsylvanian Sydney Coalfield,Canada) [J]. Int. J. Coal Geol. 82(1):116–24. doi:https://doi.org/10.1016/j.coal.2010.02.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.