164
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Problems of Detonation Wave Suppression in Hydrogen-Air Mixtures by Clouds of Inert Particles in One- and Two-dimensional Formulation

&
Pages 197-210 | Received 18 Oct 2019, Accepted 28 Apr 2020, Published online: 15 Jun 2020

References

  • Bedarev, I. A. 2019. Micro-Level Modeling of the Detonation Wave Attenuation by inert particles. Thermal Science 23 (2):439. doi:10.2298/TSCI19S2439B.
  • Bedarev, I. A., and A. V. Fedorov. 2006. Comparative Analysis of Three Mathematical Models of Hydrogen Ignition. Combust. Explos. Shock Waves 42 (1):19. doi:10.1007/s10573-006-0002-1.
  • Bedarev, I. A., and A. V. Fedorov. 2009. Testing the method of adaptive grids by computing one-dimensional detonation waves. Vychisl. Tekhnol. 14 (3):14.
  • Bedarev, I. A., K. V. Rylova, and A. V. Fedorov. 2015. Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen-air mixtures. Combust. Explos. Shock Waves. 51 (5):528. doi:10.1134/S0010508215050032.
  • Bedarev, I. A., V. M. Temerbekov, and A. V. Fedorov. 2019. Simulating the regimes of oblique detonation waves arising at detonation initiation by a small-diameter projectile. Thermophys. Aeromech. 26 (1):59. doi:10.1134/S0869864319010062.
  • Boiko, V. M., V. P. Kiselev, S. P. Kiselev, A. N. Papyrin, S. V. Poplavskii, and V. M. Fomin. 1996. Interaction of a shock wave with a cloud of particles. Combust. Expl. Shock Waves 32 (2):191. doi:10.1007/BF02097090.
  • Borisov, A. A., B. E. Gel’fand, S. A. Gubin, and S. M. Kogarko. 1975. Effect of inert solid particles on detonation of a combustible gas mixture. Combust. Explos. Shock Waves. 11 (6):774. doi:10.1007/BF00744778.
  • Chen, Z., B. Fan, and X. Jiang. 2006. Suppression effects of powder suppressants on the explosions of oxyhydrogen gas. J. Loss Prev. Process Ind. 19 (6):648. doi:10.1016/j.jlp.2006.03.006.
  • Dong, G., B. Fan, B. Xie, and J. Ye. 2005. Experimental investigation and numerical validation of explosion suppression by inert particles in large-scale duct. Proc. Comb. Inst. 30:2361. doi:10.1016/j.proci.2004.07.046.
  • Fedorov, A. V., and D. A. Tropin. 2011. Determination of the critical size of a particle cloud necessary for suppression of gas detonation. Combust. Expl. Shock Waves. 47 (4):464. doi:10.1134/S0010508211040101.
  • Fedorov, A. V., and D. A. Tropin. 2013. Modeling of detonation wave propagation through a cloud of particles in a two-velocity two-temperature formulation. Combust. Expl. Shock Waves 49 (2):178. doi:10.1134/S0010508213020081.
  • Fedorov, A. V., D. A. Tropin, and I. A. Bedarev. 2010. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles. Combust. Explos. Shock Waves 46 (3):332. doi:10.1007/s10573-010-0046-0.
  • Fomin, P. A., and J.-R. Chen. 2009. Effect of chemically inert particles on thermodynamic characteristics and detonation of a combustible gas. Combust. Sci. Technol. 181 (8):1038. doi:10.1080/00102200902908535.
  • Gottiparthi, K. C., and S. Menon. 2012. A Study of Interaction of Clouds of Inert Particles with Detonation in Gases. Comb. Sci. Tech. 184 (3):406. doi:10.1080/00102202.2011.641627.
  • Liu, Y., X. Liu, and X. Li. 2016. Numerical investigation of hydrogen detonation suppression with inert particle in pipelines. Int. J. Hydrogen Energy 41:21548. doi:10.1016/j.ijhydene.2016.09.170.
  • Nikolaev, Y. A., A. A. Vasil’ev, and V. Y. Ul’yanitskii. 2003. Gas Detonation and its Application in Engineering and Technologies (Review). Combust. Explos. Shock Waves 39 (4):22. doi:10.1023/A:1024726619703.
  • Papalexandris, M. V. 2004. Numerical simulation of detonations in mixtures of gases and solid particles. J. Fluid Mech 507:95. doi:10.1017/S0022112004008894.
  • Pinaev, A. V., A. A. Vasil’ev, and P. A. Pinaev. 2015. Suppression of gas detonation by a dust cloud at reduced mixture pressures. Shock Waves 25:267. doi:10.1007/s00193-014-0543-2.
  • Shafiee, H., and M. H. Djavareshkian. 2014. CFD Simulation of Particles Effects on Characteristics of Detonation. Int. J. Computer Theory Eng. 6 (6):466. doi:10.7763/IJCTE.2014.V6.911.
  • Tien, J. H., and R. J. Stalker. 2002. Release of Chemical Energy by Combustion in a Supersonic Mixing Layer of Hydrogen and Air. Combust. Flame. 130:329. doi:10.1016/S0010-2180(02)00371-1.
  • Tropin, D. A., and A. V. Fedorov. 2014. Mathematical modeling of detonation wave suppression by cloud of chemically inert solid particles. Comb. Sci. Tech. 186 (10–11):1690. doi:10.1080/00102202.2014.935637.
  • Tropin, D. A., and A. V. Fedorov. 2019a. Physical and mathematical modeling of interaction of detonation waves in mixtures of hydrogen, methane, silane, and oxidizer with clouds of inert micro- and nanoparticles. Comb. Sci. Tech. 191 (2):275. doi:10.1080/00102202.2018.1459584.
  • Tropin, D. A., and A. V. Fedorov. 2019b. Effect of inert micro- and nanoparticles on the parameters of detonation waves in silane/hydrogen - air mixtures. Combust. Expl. Shock Waves. 55 (2):230. doi:10.1134/S0010508219020126.
  • Ul’yanitskii, V. Y. 1981. Galloping mode in a gas detonation. Combust. Explos. Shock Waves 17 (1):118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.