363
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Pressure-induced Hydrodynamic Instability in Premixed Methane-Air Slot Flames

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Al Sarraf, E., C. Almarcha, J. Quinard, B. Radisson, B. Denet, and P. Garcia-Ybarra. 2019. Darrieus–landau instability and Markstein numbers of premixed flames in a Hele-Shaw cell. Proc. Combust. Inst. 37 (2):1783–89.
  • Altantzis, C., C. Frouzakis, A. Tomboulides, M. Matalon, and K. Boulouchos. 2012. Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. J. Fluid. Mech 700:329–61.
  • Attili, A., F. Bisetti, M. E. Mueller, and H. Pitsch. 2016. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combust. Flame 166:192–202.
  • Attili, A., R. Lamioni, L. Berger, K. Kleinheinz, P. E. Lapenna, H. Pitsch, and F. Creta. Proceedings of the Combustion Institute (Under Review), 2020.
  • Berger, L., K. Kleinheinz, A. Attili, and H. Pitsch. 2019. Characteristic patterns of thermodiffusively unstable premixed lean hydrogen flames. Proc. Combust. Inst. 37 (2):1879–86.
  • Boughanem, H., and A. Trouvé. 1998. The domain of influence of flame instabilities in turbulent premixed combustion. Symp. (Int.) Combust. 27:971–78.
  • Clanet, C., and G. Searby. 1998. First experimental study of the Darrieus-Landau instability. Phys. Rev. Lett. 80:3867.
  • Creta, F., N. Fogla, and M. Matalon. 2011. Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability. Combust. Theor. Model. 15 (2):267–98.
  • Creta, F., R. Lamioni, P. E. Lapenna, and G. Troiani. 2016. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94 (5):053102.
  • Creta, F., P. E. Lapenna, R. Lamioni, N. Fogla, and M. Matalon. 2020. Propagation of premixed flames in the presence of darrieus–landau and thermal diffusive instabilities. Combust. Flame 216:256–70.
  • Darrieus, G. Unpublished work; presented at La Technique Moderne (Paris) and in 1945 at Congrès de Mécanique Appliquée, 1938.
  • Desjardins, O., G. Blanquart, G. Balarac, and H. Pitsch. 2008. High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227 (15):7125–59.
  • Driscoll, J. 2008. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34:91–134.
  • Fogla, N., F. Creta, and M. Matalon. 2013. Influence of the Darrieus-Landau instability on the propagation of planar turbulent flames. Proc. Combust. Inst. 34:1509–17.
  • Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward. 2005. Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Software 31 (3):363–96.
  • Klein, M., D. Alwazzan, and N. Chakraborty. 2018a. A direct numerical simulation analysis of pressure variation in turbulent premixed bunsen burner flames-part 2: Surface density function transport statistics. Comput. Fluids 173:147–56.
  • Klein, M., D. Alwazzan, and N. Chakraborty. 2018b. A direct numerical simulation analysis of pressure variation in turbulent premixed bunsen burner flames-part 1: Scalar gradient and strain rate statistics. Comput. Fluids 173:178–88.
  • Klein, M., H. Nachtigal, M. Hansinger, M. Pfitzner, and N. Chakraborty. 2018c. Flame curvature distribution in high pressure turbulent bunsen premixed flames. Flow Turbulence Combust. 101 (4):1173–87.
  • Kobayashi, H., Y. Kawabata, and K. Maruta. 1998. Experimental study on general correlation of turbulent burning velocity at high pressure. Proc. Combust. Inst. 27:941–48.
  • Kobayashi, H., and H. Kawazoe. 2000. Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proc. Combust. Inst. 28 (1):375–82.
  • Kobayashi, H., T. Tamura, K. Maruta, and T. Niioka. 1996. Burning velocity of turbulent premixed flames in a high pressure environment. Proc. Combust. Inst. 26:389–96.
  • Lamioni, R., P. E. Lapenna, G. Troiani, and F. Creta. Flame induced flow features in the presence of darrieus-landau instability. Flow, Turbulence and Combustion, May 2018.
  • Lamioni, R., P. E. Lapenna, G. Troiani, and F. Creta. 2019. Strain rates, flow patterns and flame surface densities in hydrodynamically unstable, weakly turbulent premixed flames. Proc. Combust. Inst. 37 (2):1815–22.
  • Landau, L. 1944. On the theory of slow combustion. Acta Physicochimica USSR 19:77–85.
  • Lapenna, P. E. 2018. Characterization of pseudo-boiling in a transcritical nitrogen jet. Phys. Fluids 30 (7):077106.
  • Lapenna, P. E., and F. Creta. 2017. Mixing under transcritical conditions: An a-priori study using direct numerical simulation. J. Supercrit. Fluids 128:263–78.
  • Lapenna, P. E., and F. Creta. 2019. Direct numerical simulation of transcritical jets at moderate reynolds number. AIAA J. 57 (6):2254–63.
  • Lapenna, P. E., G. Indelicato, R. Lamioni, and F. Creta. 2019a. Modeling the equations of state using a flamelet approach in LRE-like conditions. Acta Astronaut. 158:460–69.
  • Lapenna, P. E., R. Lamioni, G. Troiani, and F. Creta. 2019b. Large scale effects in weakly turbulent premixed flames. Proc. Combust. Inst. 37 (2):1945–52.
  • Liu, X.-D., S. Osher, and T. Chan. 1994. Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1):20–212.
  • Luca, S., A. N. Al-Khateeb, A. Attili, and F. Bisetti. 2018. Comprehensive validation of skeletal mechanism for turbulent premixed methane–air flame simulations. J. Propul. Power 34 (1):153–60.
  • Luca, S., A. Attili, E. L. Schiavo, F. Creta, and F. Bisetti. 2019. On the statistics of flame stretch in turbulent premixed jet flames in the thin reaction zone regime at varying reynolds number. Proc. Combust. Inst. 37 (2):2451–59.
  • Markstein, G. 1964. Nonsteady flame propagation. Macmillan.
  • Matalon, M. 2007. Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39:163–91.
  • Matalon, M., and F. Creta. 2012. The turbulent flame speed of wrinkled premixed flames. Comptes Rendus - Mecanique 340:845–58.
  • Rastigejev, Y., and M. Matalon. 2006. Nonlinear evolution of hydrodynamically unstable premixed flames. J. Fluid Mech. 554:371–92.
  • Savarianandam, V. R., and C. Lawn. 2006. Burning velocity of premixed turbulent flames in the weakly wrinkled regime. Combust. Flame 146 (1–2):1–18.
  • Sivashinsky, G., and P. Clavin. 1987. On the nonlinear theory of hydrodynamic instability in flames. J. de Physique 48 (2):193–98.
  • Tomboulides, A., J. Lee, and S. Orszag. 1997. Numerical simulation of low mach number reactive flows. J Sci Comput 139:139–67.
  • Troiani, G., F. Creta, and M. Matalon. 2015. Experimental investigation of darrieus–landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35 (2):1451–59.
  • Yang, S., A. Saha, Z. Liu, and C. K. Law. 2018. Role of Darrieus–Landau instability in propagation of expanding turbulent flames. J. Fluid Mech 850:784–802.
  • Yu, R., X. Bai, and V. Bychkov. 2015. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability. Phys. Rev. E 92:063028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.