437
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Effect of CO2/N2 Dilution on Characteristics of Liquid Fuel Combustion in Flameless Combustion Mode

ORCID Icon, &
Pages 721-744 | Received 31 Jul 2019, Accepted 07 Jun 2020, Published online: 15 Jun 2020

References

  • Bahr, D. 1992. Aircraft Turbine Engine NOx emission limits: Status and trends. Int. Gas Turb. Aero. Cong. Expos. V002T02A036–V002T02A036.
  • Cavaliere, A., and M. de Joannon. 2004. Mild combustion. Prog. Energy Combust. Sci. 30 (4):329–66.
  • Cheong, K.-P., P. Li, F. Wang, and J. Mi. 2017. Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions. Energy 124:652–64.
  • Coelho, P., and N. Peters. 2001. Numerical simulation of a mild combustion burner. Combust. Flame 124 (3):503–18.
  • Dally, B. B., A. N. Karpetis, and R. S. Barlow. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29 (1):1147–54.
  • Dally, B. B., E. Riesmeier, and N. Peters. 2004. Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame 137 (4):418–31.
  • Danon, B., W. De Jong, and D. Roekaerts. 2010. Experimental and numerical investigation of a FLOX combustor firing low calorific value gases. Combust. Sci. Technol. 182 (9):1261–78.
  • Ghoniem, A. F. 2011. Needs, resources and climate change: Clean and efficient conversion technologies. Prog. Energy Combust. Sci. 37 (1):15–51.
  • Heitor, M. V., and A. L. N. Moreira. 1993. Thermocouples and sample probes for combustion studies. Prog. Energy Combust. Sci. 19 (3):259–78.
  • Katsuki, M., and T. Hasegawa. 1998. The science and technology of combustion in highly preheated air. Symp. (Int.) On Combust. 27 (2):3135–46.
  • Krishnamurthy, N., P. Paul, and W. Blasiak. 2009. Studies on low-intensity oxy-fuel burner. Proc. Combust. Inst. 32 (2):3139–46.
  • Kumar, S., Paul, P. J., & Mukunda, H. S. 2005. Investigations of the scaling criteria for a mild combustion burner. Proc. Combust. Inst. 30 (2):2613–21.
  • Lavadera, M. L., P. Sabia, G. Sorrentino, R. Ragucci, and M. J. C. de Joannon. 2016. Experimental study of the effect of CO2 on propane oxidation in a Jet Stirred Flow Reactor. Fuel 184:876–88.
  • Lee, S.-H., M. Le Dilosquer, R. Singh, and M. Rycroft. 1996. Further considerations of engine emissions from subsonic aircraft at cruise altitude. J. Atmos. Environ. 30 (22):3689–95.
  • Li, P., B. B. Dally, J. Mi, and F. Wang. 2013. MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace. Combust. Flame 160 (5):933–46.
  • Li, P., F. Wang, Y. Tu, Z. Mei, J. Zhang, Y. Zheng, H. Liu, Z. Liu, J. Mi, and C. Zheng. 2014. Moderate or intense low-oxygen dilution oxy-combustion characteristics of light oil and pulverized coal in a pilot-scale furnace. Energy Fuels 28 (2):1524–35.
  • Mahashabde, A., P. Wolfe, A. Ashok, C. Dorbian, Q. He, A. Fan, S. Lukachko, A. Mozdzanowska, C. Wollersheim, and S. R. Barrett. 2011. Assessing the environmental impacts of aircraft noise and emissions. J. Prog. Aero. Sci. 47 (1):15–52.
  • Medwell, P. R., P. A. M. Kalt, and B. B. Dally. 2007. Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow. Combust. Flame 148 (1–2):48–61.
  • Özdemir, I., and N. Peters. 2001. Characteristics of the reaction zone in a combustor operating at mild combustion. Exp. Fluids 30 (6):683–95.
  • Perpignan, A. A., A. G. Rao, and D. J. Roekaerts. 2018. Flameless combustion and its potential towards gas turbines. Prog. Energy Combust. Sci. 69:28–62.
  • Plessing, T., N. Peters, and J. G. Wünning. 1998. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Sym. (Int.) On Combust. 27 (2):3197–204.
  • Reddy, V. M., A. Katoch, W. L. Roberts, and S. Kumar. 2015a. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels. Proc. Combust. Inst. 35 (3):3581–89.
  • Reddy, V. M., D. Sawant, D. Trivedi, and S. Kumar. 2013. Studies on a liquid fuel based two stage flameless combustor. Proc. Combust. Inst. 34 (2):3319–26.
  • Reddy, V. M., D. Trivedi, D. Sawant, and S. Kumar. 2015b. Investigations on emission characteristics of liquid fuels in a swirl combustor. Combust. Sci. Technol. 187 (3):469–88.
  • Reddy, V. M., P. Biswas, P. Garg, and S. Kumar. 2014. Combustion characteristics of biodiesel fuel in high recirculation conditions. Fuel Process. Technol. 118:310–17.
  • Sabia, P., G. Sorrentino, A. Chinnici, A. Cavaliere, and R. J. E. Ragucci. 2015. Dynamic behaviors in methane MILD and oxy-fuel combustion. Chemical effect of CO2. Energy Fuels 29 (3):1978–86.
  • Sharma, S., H. Pingulkar, A. Chowdhury, and S. Kumar. 2018. A new emission reduction approach in MILD combustion through asymmetric fuel injection. Combust. Flame 193:61–75.
  • Sharma, S., R. Kumar, A. Chowdhury, Y. Yoon, and S. Kumar. 2017. On the effect of spray parameters on CO and NOx emissions in a liquid fuel fired flameless combustor. Fuel 199:229–38.
  • Sorrentino, G., P. Sabia, M. de Joannon, A. Cavaliere, and R. Ragucci. 2016. The effect of diluent on the sustainability of MILD combustion in a cyclonic burner. J. Flow Turb. Combust. 96 (2):449–68.
  • Wall, T. F. 2007. Combustion processes for carbon capture. Proc. Combust. Inst. 31 (1):31–47.
  • Weber, R., J. P. Smart, and W. Vd Kamp. 2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc. Combust. Inst. 30 (2):2623–29.
  • Wünning, J., and J. Wünning. 1997. Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. Sci. 23 (1):81–94.
  • Yetter, R. A., I. Glassman, and H. C. Gabler. 2000. Asymmetric whirl combustion: A new low NOx approach. Proc. Combust. Inst. 28 (1):1265–72.
  • Zhang, J., J. Mi, P. Li, F. Wang, and B. B. Dally. 2015. Moderate or intense low-oxygen dilution combustion of methane diluted by CO2 and N2. Energy Fuels 29 (7):4576–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.