161
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study of EGR Dilution and O2 Enrichment Effects on Turbulent Non-Premixed Swirling Flames

, , , , &
Pages 280-289 | Received 07 Dec 2019, Accepted 19 Jun 2020, Published online: 26 Jun 2020

References

  • Archer, S., and A. Gupta 2013. Effect of Swirl on flow dynamics in unconfined and confined gaseous fuel flames.42 nd Aerospace Sciences Meeting and Exhibit, AIAA 2004–813, 5–8 January 2004, Reno, Nevada.
  • Beér, J. M., and N. A. Chigier. 1972. Combustion aerodynamics. Applied Science Publishers, London.
  • Boushaki, T., N. Merlo, S. de Persis, C. Chauveau, and I. Gökalp. 2019. Experimental investigation of CH4-air-O2 turbulent swirling flames by Stereo-PIV. Exp. Thermal Fluid Sci. 106:87–99. doi:10.1016/j.expthermflusci.2019.04.026.
  • Boushaki, T., J. C. Sautet, and B. Labegorre. 2009. Control of flames by radial jet actuators in oxy-fuel burners. Combust. Flame 156:2043–55. doi:10.1016/j.combustflame.2009.06.013.
  • Cheng, R., D. Yegian, M. Miyasato, G. Samuelsen, C. Benson, R. Pellizzari, P. Loftus. Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc. Combust. Inst. 28 (1):1305–13. doi:10.1016/S0082-0784(00)80344-6.
  • Chterev, I., G. Sundararajan, J. Seitzman, and T. Lieuwen. 2015. Precession effects on the relationship between time-averaged and instantaneous swirl flow and flame characteristics. ASME, GT2015-42768.
  • Khalil, A. E. E., and A. K. Gupta. 2011. Swirling distributed combustion for clean energy conversion. Appl. Energy 88 (11):3685–93. doi:10.1016/j.apenergy.2011.03.048.
  • Liu, C., G. Chen, N. Sipöcz, M. Assadi, and X. S. Bai. 2012. Characteristics of oxy-fuel combustion in gas turbines. Appl. Energy 89:387–94.
  • Syred, N. 2006. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32:93–161. doi:10.1016/j.pecs.2005.10.002.
  • Takagi, T., H. D. Shin, and A. Ishio. 1981. Properties of turbulence in turbulent diffusion flames. Combust. Flame 40:121–40. doi:10.1016/0010-2180(81)90118-8.
  • Wang, L., Z. Liu, S. Chen, C. Zheng, and J. Li. 2013. Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane. Energy Fuels 27 (12):7602–11. doi:10.1021/ef401559r.
  • Wang, S., Z. Wang, Y. He, X. Han, Z. Sun, Y. Zhu, and M. Costa. 2020. Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method. Fuel 259:116–52. doi:10.1016/j.fuel.2019.116152.
  • Yu, B., S. Lee, and C. E. Lee. 2015. Study of NOX emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation. Energy 91:119–27. doi:10.1016/j.energy.2015.08.023.
  • Zaidaoui, H., T. Boushaki, J. C. Sautet, C. Chauveau, B. Sarh, and I. Gokalp. 2017. Effects of CO2 dilution and O2 enrichment on non-premixed turbulent CH4-air flames in a swirl burner. Combust. Sci. Technol. 190 (5):784–802. doi:10.1080/00102202.2017.1409217.
  • Zhong, S., F. Zhang, Z. Peng, F. Bai, and Q. Du. 2018. Roles of CO2 and H2O in premixed turbulent oxy-fuel combustion. Fuel 234:1044–54. doi:10.1016/j.fuel.2018.07.135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.