191
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Numerical Investigation of the Minimum Ignition Energy Requirement for Forced Ignition of Turbulent Droplet-laden Mixtures

, , & ORCID Icon
Pages 307-340 | Received 10 Mar 2020, Accepted 19 Jun 2020, Published online: 05 Jul 2020

References

  • Ballal, D. R., and A. Lefebvre. 1977a. Ignition and flame quenching in flowing gaseous mixtures. Proc. Roy. Soc. Lond. 357:163.
  • Ballal, D. R., and A. Lefebvre. 1977b. Spark ignition of turbulent flowing gases. 15th Aero. Sci. Meeting, AIAA Los Angeles, paper no. 77-185.
  • Ballal, D. R., and A. Lefebvre. 1978. Ignition and flame quenching of quiescent fuel mists. Proc. R. Soc. A Math. Phys. Eng. Sci. 364:277.
  • Ballal, D. R., and A. Lefebvre. 1979. Ignition and flame quenching of flowing heterogeneous fuel-air mixtures. Combust. Flame 35:155.
  • Bilger, R. W. 1988. The structure of turbulent non-premixed flames. Proc. Combust. Inst. 23:475.
  • Briones, A. M., S. K. Aggarwal, and V. R. Katta. 2006. A numerical investigation of flame lift off, stabilization, and blowout. Phys. Fluids 18:043603. doi:10.1063/1.2191851.
  • Cardin, C., B. Renou, G. Cabot, and A. M. Boukhalfa. 2013a. Experimental analysis of laser- induced spark ignition of lean turbulent premixed flames. Comptes Rendus Mécanique 341 (1–2):191. doi:10.1016/j.crme.2012.10.019.
  • Cardin, C., B. Renou, G. Cabot, and A. M. Boukhalfa. 2013b. Experimental analysis of laser- induced spark ignition of lean turbulent premixed flames: New insight into ignition transition. Combust. Flame 160 (8):1414. doi:10.1016/j.combustflame.2013.02.026.
  • Chakraborty, N., E. Mastorakos, and R. S. Cant. 2007. Effects of turbulence on spark ignition in inhomogeneous mixtures: A direct numerical simulation (DNS) study. Combust. Sci. Technol. 179:293. doi:10.1080/00102200600809555.
  • Chiu, H. H., and T. M. Liu. 1977. Group combustion of liquid droplets. Combust. Sci. Technol. 17 (3–4):127. doi:10.1080/00102207708946823.
  • Danis, A. M., I. Namer, and N. P. Cernansky. 1988. Droplet size and equivalence ratio effects on spark ignition of monodisperse N-heptane and methanol sprays. Combust. Flame 74:285. doi:10.1016/0010-2180(88)90074-0.
  • de Oliveira, P., P. M. Allison, and E. Mastorakos. 2019. Ignition of uniform droplet-laden weakly turbulent flows following a laser spark. Combust. Flame 199:387. doi:10.1016/j.combustflame.2018.10.009.
  • Dietrich, D. L., N. P. Cernansky, M. B. Somashekara, and I. Namer. 1991. Spark ignition of a bidisperse, n-decane fuel spray. Proc. Combust. Inst. 23:1383.
  • El-Rabii, H., G. Gaborel, J.-P. Lapios, D. Thévenin, J. Rolon, and J.-P. Martin. 2005. Laser spark ignition of two-phase monodisperse mixtures. Opt. Commun 256:495. doi:10.1016/j.optcom.2005.06.058.
  • Espí, C. V., and A. Liñán. 2002. Thermal-diffusive ignition and flame initiation by a local energy source. Combust. Theo. Mod. 6:297. doi:10.1088/1364-7830/6/2/309.
  • Espi, C. V., and A. Liñán. 2001. Fast, non-diffusive ignition of a gaseous reacting mixture subject to a point energy source. Combust. Theo. Mod. 5:485. doi:10.1088/1364-7830/5/3/313.
  • Fujita, A., H. Watanabe, R. Kurose, and S. Komori. 2013. Two-dimensional direct numerical simulation of spray flames – Part 1: Effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model. Fuel 104:515. doi:10.1016/j.fuel.2012.08.044.
  • Haruki, Y., A. L. Pillai, T. Kitano, and R. Kurose. 2018. Numerical investigation of flame propagation in fuel droplet arrays. Atomization and Sprays 28:357. doi:10.1615/AtomizSpr.2018022342.
  • Hayashi, S., S. Kumagai, and T. Sakai. 1977. Propagation velocity and structure of flames in droplet-vapor-air mixtures. Combust. Sci. Technol. 15:169. doi:10.1080/00102207708946782.
  • Huang, C., S. S. Shy, C. C. Liu, and Y. Yan. 2007. A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes. Proc. Combust. Inst. 31:1401. doi:10.1016/j.proci.2006.08.024.
  • Jiang, L. J., S. S. Shy, M. T. Nguyen, S. Y. Huang, and D. W. Yu. 2018. Spark ignition probabil- ity and minimum ignition energy transition of the lean iso-octane/air mix- ture in premixed turbulent combustion. Combust. Flame 187:87. doi:10.1016/j.combustflame.2017.09.006.
  • Kariuki, J., and E. Mastorakos. 2017. Experimental investigation of turbulent flames in uniform dispersions of ethanol droplets. Combust. Flame 179:95.
  • Lawes, M., and A. Saat. 2011. Burning rates of turbulent iso-octane aerosol mixtures in spherical flame explosions. Proc. Combust. Inst. 33:2047. doi:10.1016/j.proci.2010.05.094.
  • Letty, C., E. Mastorakos, A. R. Masri, M. Juddoo, and W. O’Loughlin. 2012. Structure of ignit- ing ethanol and n-heptane spray flames with and without swirl. Exp. Therm. Fluid Sci. 43:47. doi:10.1016/j.expthermflusci.2012.03.020.
  • M. Chaos, A. Kazakov, Z. Zhao, F. L. Dryer, 2007, A high‐temperature chemical kinetic model for primary reference fuels. International Journal of Chemical Kinetics 39, 399-414 7
  • M. Nakamura, F. Akamatsu, R. Kurose, and M. Katsuki. 2005. Combustion mechanism of liquid fuel spray in a gaseous flame. Physics of Fluids 17 (1–14) 12
  • Malkeson S. P. and N. Chakraborty. 2010. Statistical Analysis of Displacement Speed in Turbulent Stratified Flames: A Direct Numerical Simulation Study. Combustion Science and Technology 182, 1841–1883.
  • Marchione, T., S. Ahmed, and E. Mastorakos. 2009. Ignition of turbulent swirling n- heptane spray flames using single and multiple sparks. Combust. Flame 156:166. doi:10.1016/j.combustflame.2008.10.003.
  • Mastorakos, E. 2017. Forced ignition of turbulent spray flames. Proc. Combust. Inst. 36:2367. doi:10.1016/j.proci.2016.08.044.
  • Mastorakos, E., T. A. Baritaud, and T. J. Poinsot. 1997. Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109:198. doi:10.1016/S0010-2180(96)00149-6.
  • Moesl, K. G., K. G. Vollmer, T. Sattelmayer, J. Eckstein, and H. Kopecek. 2009. Experimental study on laser-induced ignition of swirl-stabilized kerosene flames. J. Eng. Gas Turbines Power 131:021501. doi:10.1115/1.2981181.
  • Neophytou, A., and E. Mastorakos. 2009. Simulations of laminar flame propagation in droplet mists. Combust. Flame 156:1627. doi:10.1016/j.combustflame.2009.02.014.
  • Neophytou, A., E. Mastorakos, and R. S. Cant. 2010. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame 157:1071. doi:10.1016/j.combustflame.2010.01.019.
  • Neophytou, A., E. Mastorakos, and R. S. Cant. 2012. The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combust. Flame 159:641. doi:10.1016/j.combustflame.2011.08.024.
  • Ozel-Erol, G., J. Hasslberger, M. Klein, and N. Chakraborty. 2018. A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity. Phys. Fluids 30:086104. doi:10.1063/1.5045487.
  • Ozel-Erol, G., J. Hasslberger, M. Klein, and N. Chakraborty. 2019. A direct numerical simulation investigation of spherically expanding flames propagating in fuel droplet-mists for different droplet diameters and overall equivalence ratios. Combust. Sci. Technol. 191:833. doi:10.1080/00102202.2019.1576649.
  • Papapostolou, V., G. Ozel-Erol, C. Turquand d’Auzay, and N. Chakraborty. 2019. Edge flame propagation statistics in igniting monodisperse droplet-laden mixtures. Phys. Fluids 31:105–08. doi:10.1063/1.5113576.
  • Patel, D. and N. Chakraborty, 2015. Effects of energy deposition characteristics on localised forced ignition of homogeneous mixtures, International Journal of Spray and Combustion Dynamics, 7, 151-174.
  • Patel, D. and N. Chakraborty. 2016. Effects of Mixture Distribution on Localized Forced Ignition of Stratified Mixtures: A Direct Numerical Simulation Study. Combustion Science and Technology 188(11–12), 1904–1924.
  • Peng, M. W., S. S. Shy, Y. W. Shiu, and C. C. Liu. 2013. High pressure ignition kernel devel- opment and minimum ignition energy measurements in different regimes of premixed turbulent combustion. Combust. Flame 160:1755. doi:10.1016/j.combustflame.2013.03.030.
  • Pillai, A. L., and R. Kurose. 2018. Numerical investigation of combustion noise in an open turbulent spray flame. Appl. Acoust. 133:16. doi:10.1016/j.apacoust.2017.11.025.
  • Pillai, A. L., and R. Kurose. 2019. Combustion noise analysis of a turbulent spray flame using a hybrid DNS/APE-RF approach. Combust. Flame 200:168. doi:10.1016/j.combustflame.2018.10.041.
  • Reveillon, J., and F. X. Demoulin. 2007. Evaporating droplets in turbulent reacting flows. Proc. Combust. Inst. 31:2319. doi:10.1016/j.proci.2006.07.114.
  • Reveillon, J., and L. Vervisch. 2000. Spray vaporization in nonpremixed turbulent combustion modeling: A single droplet model. Combust. Flame 121:75. doi:10.1016/S0010-2180(99)00157-1.
  • Reveillon, J., and L. Vervisch. 2005. Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. J. Fluid Mech 537:317. doi:10.1017/S0022112005005227.
  • Rogallo, R. S. 1981. Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315. California: NASA Ames Research Center.
  • Schroll, P., A. P. Wandel, R. S. Cant, and E. Mastorakos. 2009. Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst. 32:2275. doi:10.1016/j.proci.2008.06.057.
  • Shy, S. S., C. C. Liu, and W. Shih. 2010. Ignition transition in turbulent premixed combustion. Combustion and Flame 157 (2), 341–350 doi:10.1016/j.combustflame.2009.08.005
  • Shy, S. S., Y. W. Shiu, L. J. Jiang, C. C. Liu, and S. Minaev. 2017. Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm. Proc. Combust. Inst. 36:1785. doi:10.1016/j.proci.2016.08.049.
  • Singh, A. K., and C. E. Polymeropoulos. 1988. Spark ignition of aerosols. Proc. Combust. Inst. 21:513. doi:10.1016/S0082-0784(88)80280-7.
  • Spalding, D. B. 1979. Combustion and heat transfer. 1st ed. Oxford, UK: Pergamon.
  • Sreedhara, S., and K. Y. Huh. 2007. Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst. 31:2335. doi:10.1016/j.proci.2006.07.163.
  • Stempka, J., L. Kuban, and A. Tyliszczak. 2018. LES study of turbulence intensity impact on spark ignition in a two-phase flow. Arch. Mech. 70 (6):551.
  • Stempka, J., L. Kuban, and A. Tyliszczak. 2019. Modelling of spark ignition in turbulent reacting droplet-laden temporally evolving jet using LES. Technische Mechanik 39 (1):149.
  • Swaminathan, N., K. N. C. Bray. 2011. Turbulent Premixed Flames, p. 5. Cambridge University Press, New York.
  • Tarrazo, E., A. Sanchez, A. Liñán, and F. A. Williams. 2006. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147:32. doi:10.1016/j.combustflame.2006.08.001.
  • Turns, S. R. 2000. An introduction to combustion: Concepts and applications. 1st ed. New York, USA: McGraw Hill Pvt. Ltd.
  • Turquand d’Auzay, C., V. Papapostolou, S. F. Ahmed, and N. Chakraborty. 2019. On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures. Combust. Flame 201:104. doi:10.1016/j.combustflame.2018.12.015.
  • Wacks, D., N. Chakraborty, and E. Mastorakos. 2016. Statistical analysis of turbulent flame-droplet interaction: A direct numerical simulation study. Flow, Turbul. Combust 96:573. doi:10.1007/s10494-015-9652-y.
  • Wandel, A. 2013. Extinction predictor in turbulent sprays. Proc. Combust. Inst. 34:1625. doi:10.1016/j.proci.2012.07.037.
  • Wandel, A. 2014. Influence on scalar dissipation on flame success in turbulent sprays with spark ignition. Combust. Flame 161:2579. doi:10.1016/j.combustflame.2014.04.006.
  • Wandel, A., N. Chakraborty, and E. Mastorakos. 2009. Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst. 32 (2):2283. doi:10.1016/j.proci.2008.06.102.
  • Wang, Y., and C. J. Rutland. 2005. Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow. Proc. Combust. Inst. 30:893. doi:10.1016/j.proci.2004.08.074.
  • Watanabe, H., R. Kurose, S. M. Hwang, and F. Akamatsu. 2007. Characteristics of flamelets in spray flames formed in a laminar counterflow. Combust. Flame 148:234. doi:10.1016/j.combustflame.2006.09.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.