244
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Effects of Fuel Lewis Number on the Near-wall Dynamics for Statistically Planar Turbulent Premixed Flames Impinging on Inert Cold Walls

, ORCID Icon & ORCID Icon
Pages 235-265 | Received 09 Feb 2020, Accepted 18 Jul 2020, Published online: 24 Aug 2020

References

  • Ahmed, U., N. A. K. Doan, J. Lai, M. Klein, N. Chakraborty, and N. Swaminathan. 2018. Multiscale analysis of head-on quenching premixed turbulent flames. Phys. Fluids 30:105102. doi:10.1063/1.5047061.
  • Ahmed, U., A. L. Pillai, N. Chakraborty, and R. Kurose. 2019. Statistical behaviour of turbulent kinetic energy transport in boundary layer flashback of hydrogen-rich premixed combustion. Phys. Rev. Fluids 4:103201. doi:10.1103/PhysRevFluids.4.103201.
  • Ahmed, U., R. Prosser, and A. J. Revell. 2014. Towards the development of an evolution equation for flame turbulence interaction in premixed turbulent combustion. Flow Turbul. Combust. 93:637–63. doi:10.1007/s10494-014-9557-1.
  • Alshaalan, T. M., and C. J. Rutland. 1998. Turbulence, scalar transport, and reaction rates in flame-wall interaction. Proc. Combust. Inst. 27 (1):793. doi:10.1016/S0082-0784(98)80474-8.
  • Bachelor, G. K., and A. A. Townsend. 1948. Decay of turbulence in final period. Proc. R. Soc. Lond. A194:527–43.
  • Bejan, A. 2013. Convective heat transfer. 4th ed. New York, USA: Willey Online Library.
  • Boger, M., D. Veynante, H. Boughanem, and A. Trouvé. 1998. Direct numerical simulation analysis of flame surface density concept for Large Eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27:917–25. doi:10.1016/S0082-0784(98)80489-X.
  • Bray, K. N. C. 1980. Turbulent flows with premixed reactants. In Turbulent reacting flows, ed. P. A. Libby and F. A. Williams, 115–83. Berlin Heidelburg, New York: Springer Verlag.
  • Bruneaux, G., T. Poinsot, and J. H. Ferziger. 1997. Premixed flame-wall interaction in a turbulent channel flow: Budget for the flame surface density evolution equation and modelling. J. Fluid. Mech. 349:191–219. doi:10.1017/S0022112097006769.
  • Candel, S. M., and T. J. Poinsot. 1990. Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70 (1–3):1–15. doi:10.1080/00102209008951608.
  • Chakraborty, N., D. Alwazzan, M. Klein, and R. S. Cant. 2019. On the validity of Damköhler’s first hypothesis in turbulent Bunsen burner flames: A computational analysis. Proc. Combust. Inst. 37 (2):2231–39. doi:10.1016/j.proci.2018.07.042.
  • Chakraborty, N., and R. S. Cant. 2005. Influence of Lewis Number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17 (10):105105. doi:10.1063/1.2084231.
  • Chakraborty, N., and R. S. Cant. 2006. Influence of Lewis Number on strain rate effects in turbulent premixed flame propagation in the thin reaction zones regime. Int. J. Heat Mass Trans. 49 (13–14):2158–72. doi:10.1016/j.ijheatmasstransfer.2005.11.025.
  • Chakraborty, N., and R. S. Cant. 2009. Effects of Lewis number on scalar transport in turbulent premixed flames. Phys. Fluids 21 (3):035110. doi:10.1063/1.3097007.
  • Chakraborty, N., and R. S. Cant. 2011. Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158 (9):1768–87. doi:10.1016/j.combustflame.2011.01.011.
  • Chakraborty, N., M. Champion, A. Mura, and N. Swaminathan. 2011. Scalar dissipation rate approach to reaction rate closure. In Turbulent premixed flame, ed. N. Swaminathan and K. N. C. Bray, 76–102. 1st ed. Cambridge, UK: Cambridge University Press.
  • Chakraborty, N., and M. Klein. 2008. Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids 20:065102. doi:10.1063/1.2919129.
  • Chakraborty, N., M. Klein, and N. Swaminathan. 2009. Effects of Lewis number on reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32 (1):1409–17. doi:10.1016/j.proci.2008.06.021.
  • Chakraborty, N., I. Konstantinou, and A. Lipatnikov. 2016. Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames. Phys. Fluids 28 (1):015109. doi:10.1063/1.4939795.
  • Chakraborty, N., and N. Swaminathan. 2007. Influence of Damköhler number on turbulence-scalar interaction in premixed flames, Part I: Physical insight. Phys. Fluids 19:045103. doi:10.1063/1.2714070.
  • Dopazo, C., and L. Cifuentes. 2016. The physics of scalar gradients in turbulent premixed combustion and its relevance to modeling. Combust. Sci. Technol. 188 (9):1376–97. doi:10.1080/00102202.2016.1197919.
  • Dopazo, C., L. Cifuentes, D. Alwazzan, and N. Chakraborty. 2018. Influence of the Lewis number on effective strain rates in weakly turbulent premixed combustion. Combust. Sci. Technol. 190 (4):591–614. doi:10.1080/00102202.2017.1398744.
  • Dopazo, C., L. Cifuentes, and N. Chakraborty. 2017. Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers”. Phys. Fluids 29 (4):045106. doi:10.1063/1.4981219.
  • Dopazo, C., L. Cifuentes, J. Martin, and C. Jimenez. 2015. Strain rates normal to approaching isoscalar surfaces in a turbulent premixed flame. Combust. Flame 162:1729–36. doi:10.1016/j.combustflame.2014.11.034.
  • Gruber, A., J. H. Chen, D. Valiev, and C. K. Law. 2012. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech. 709:516–42. doi:10.1017/jfm.2012.345.
  • Gruber, A., R. Sankaran, E. R. Hawkes, and J. H. Chen. 2010. Turbulent flame-wall interaction: A direct numerical simulation study. J. Fluid Mech. 658:5–32. doi:10.1017/S0022112010001278.
  • Han, I., and K. Y. Huh. 2008. Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame 152 (1–2):194–205. doi:10.1016/j.combustflame.2007.10.003.
  • Haworth, D. C., and T. J. Poinsot. 1992. Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244:405–36. doi:10.1017/S0022112092003124.
  • Huang, W. M., S. R. Vosen, and R. Greif. 1986. Heat transfer during laminar flame quenching. Proc. Combust. Inst. 21:1853–60. doi:10.1016/S0082-0784(88)80420-X.
  • Jarosinsky, J. 1986. A survey of recent studies on flame extinction. Prog. Energy Combust Sci. 12:81–116. doi:10.1016/0360-1285(86)90014-6.
  • Jenkins, K. W., and R. S. Cant. 1999. Direct numerical simulation of turbulent flame kernels. In Recent advances in DNS and LES, ed. D. Knight and L. Sakell, 191–202. Dordrecht: Springer Netherlands.
  • Kim, S. H., and H. Pitsch. 2007. Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19 (11):115104. doi:10.1063/1.2784943.
  • Kollmann, W., and J. H. Chen. 1998. Pocket formation and the flame surface density equation. Proc. Combust. Inst. 27:927–34. doi:10.1016/S0082-0784(98)80490-6.
  • Lai, J., D. Alwazzan, and N. Chakraborty. 2017a. Turbulent scalar flux transport in head-on quenching of turbulent premixed flames in the context of Reynolds Averaged Navier Stokes simulations. J. Turb. 188:11.
  • Lai, J., and N. Chakraborty. 2016a. Effects of Lewis Number on head on quenching of turbulent premixed flame: A direct numerical simulation analysis. Flow Turbul. Combust. 96 (2):279–308. doi:10.1007/s10494-015-9629-x.
  • Lai, J., and N. Chakraborty. 2016b. Statistical behaviour of scalar dissipation rate for head on quenching of turbulent premixed flames: A direct numerical simulation analysis. Combust. Sci. Technol. 188:250–76. doi:10.1080/00102202.2015.1102903.
  • Lai, J., and N. Chakraborty. 2016c. A-priori direct numerical simulation modelling of scalar dissipation rate transport in head-on quenching of turbulent premixed flames. Combust. Sci. Technol. 188:1440–71. doi:10.1080/00102202.2016.1195823.
  • Lai, J., and N. Chakraborty. 2016d. Modelling of progress variable variance transport in head on quenching of turbulent premixed flames: A direct numerical simulation analysis. Combust. Sci. Technol. 188:1925–50. doi:10.1080/00102202.2016.1211868.
  • Lai, J., N. Chakraborty, and A. Lipatnikov. 2017d. Vorticity and enstrophy transport in head-on quenching of turbulent premixed flames. Europ. J. Mech.- B/Fluids 65:384–97. doi:10.1016/j.euromechflu.2016.10.013.
  • Lai, J., N. Chakraborty, P. Zhao, and L. Wang. 2019. Heat flux and flow topology statistics in oblique and head-on quenching of turbulent premixed flames by isothermal inert walls. Combust. Sci. Technol. 191 (2):353–81. doi:10.1080/00102202.2018.1467897.
  • Lai, J., M. Klein, and N. Chakraborty. 2017b. Assessment of algebraic Flame Surface Density closures in the context of Large Eddy Simulations of head-on quenching of turbulent premixed flames. Combust. Sci. Technol. 189 (11):1966–91. doi:10.1080/00102202.2017.1347161.
  • Lai, J., M. Klein, and N. Chakraborty. 2018. Direct Numerical Simulation of head-on quenching of statistically planar turbulent premixed methane-air flames using a detailed chemical mechanism. Flow Turbul. Combust 101 (4):1073–91. doi:10.1007/s10494-018-9907-5.
  • Lai, J., A. Moody, and N. Chakraborty. 2017c. Turbulent kinetic energy transport in head-on quenching of turbulent premixed flames in the context of Reynolds Averaged Navier Stokes simulations. Fuel 199:456–77. doi:10.1016/j.fuel.2017.02.091.
  • Mann, M., C. Jainski, M. Euler, B. Bhm, and A. Dreizler. 2014. Transient flame wall interactions: Experimental analysis using spectroscopic temperature and co concentration measurements. Combust. Flame 161:2371–86. doi:10.1016/j.combustflame.2014.02.008.
  • Poinsot, T., and S. K. Lele. 1992. Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys. 101 (1):104–29. doi:10.1016/0021-9991(92)90046-2.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion. 2nd ed. Philadelphia, USA: R.T. Edwards Inc.
  • Poinsot, T. J., D. C. Haworth, and G. Bruneaux. 1993. Direct simulation and modelling of flame- wall interaction for premixed turbulent combustion. Combust. Flame 95 (1–2):118–32. doi:10.1016/0010-2180(93)90056-9.
  • Popp, P., and M. Baum. 1997. Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108 (3):327–48. doi:10.1016/S0010-2180(96)00144-7.
  • Rogallo, R. S. 1981. Numerical experiments in homogeneous turbulence. California: NASA Technical Memorandum 81315, NASA Ames Research Center.
  • Rutland, C., and A. Trouvé. 1993. Direct Simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94 (1–2):41–57. doi:10.1016/0010-2180(93)90018-X.
  • Sellmann, J., J. Lai, N. Chakraborty, and A. M. Kempf. 2017. Flame Surface Density based modelling of head-on quenching of turbulent premixed flames. Proc. Combust. Inst. 36:1817–25. doi:10.1016/j.proci.2016.07.114.
  • Trouvé, A., and T. Poinsot. 1994. The evolution equation for flame surface density in turbulent premixed combustion. J. Fluid Mech. 278:1–31. doi:10.1017/S0022112094003599.
  • Vosen, S. R., R. Greif, and C. Westbrook. 1984. Unsteady heat transfer in laminar flame quenching. Proc. Combust. Inst. 20:76–83.
  • Wray, A. 1990. Minimal storage time-advancement schemes for spectral methods. California, USA: NASA Ames Research Center.
  • Yoo, C. S., Y. Wang, A. Trouvé, and H. G. Im. 2005. Characteristic boundary conditions for direct simulations of turbulent counter flow flames. Combust. Theor. Model. 9:617–46. doi:10.1080/13647830500307378.
  • Zhao, P., L. Wang, and N. Chakraborty. 2018a. Analysis of the flame-wall interaction in premixed turbulent combustion. J. Fluid Mech. 848:193–218. doi:10.1017/jfm.2018.356.
  • Zhao, P., L. Wang, and N. Chakraborty. 2018b. Strain rate and flame orientation statistics in the near-wall region for turbulent flame-wall interaction. Combust. Theor. Model. 22 (5):921–38. doi:10.1080/13647830.2018.1465598.
  • Zhao, P., L. Wang, and N. Chakraborty. 2019. Vectorial structure of the near-wall premixed flame. Phys. Rev. Fluids 4 (6):063203. doi:10.1103/PhysRevFluids.4.063203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.