254
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation on Effects of Ignition Configurations on Knocking Combustion Using an Optical Rapid Compression Machine under Lean to Stoichiometric Conditions

, , &
Pages 1678-1699 | Received 28 Jun 2020, Accepted 19 Sep 2020, Published online: 30 Sep 2020

References

  • Agency, I. E. 2016. World energy outlook 2016.
  • Altin, İ., and A. Bilgin. 2015. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries. Appl. Therm. Eng. 87:678–87. doi:https://doi.org/10.1016/j.applthermaleng.2015.05.054.
  • Alvarez, C. E. C., G. E. Couto, V. R. Roso, A. B. Thiriet, and R. M. Valle. 2018. A review of prechamber ignition systems as lean combustion technology for SI engines. Appl. Therm. Eng. 128:107–20.
  • Chen, Y., Y. Wang, and R. Raine. 2017. Correlation between cycle-by-cycle variation, burning rate, and knock: A statistical study from PFI and DISI engines. Fuel 206:210–18.
  • Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. 1998. A comprehensive modeling study of n-heptane oxidation. Combust. Flame 114:149–77.
  • Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. 2002. A comprehensive modeling study of iso-octane oxidation. Combust. Flame 129:253–80.
  • Defilippo, A., S. Saxena, V. Rapp, R. Dibble, J.-Y. Chen, A. Nishiyama, and Y. Ikeda 2011. Extending the lean stability limits of gasoline using a microwave-assisted spark plug. SAE Technical Paper.
  • Di, H., X. He, P. Zhang, Z. Wang, M. S. Wooldridge, C. K. Law, C. Wang, S. Shuai, and J. Wang. 2014. Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane. Combust. Flame 161:2531–38.
  • Ferguson, C. R., and A. T. Kirkpatrick. 2015. Internal combustion engines: Applied thermosciences. UK: John Wiley & Sons.
  • Fraser, N., H. Blaxill, G. Lumsden, and M. Bassett. 2009. Challenges for increased efficiency through gasoline engine downsizing. SAE Int. J. Engines 2:991–1008.
  • Goodwin, D. G., R. L. S. Harry, K. Moffat, and B. W. Weber. 2018. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes.
  • Goswami, A., S. Vashist, and A. Nayyar. 2015. Effect of compression ratio on the performance characteristics of spark ignition engine fueled with alternative fuels: a review. SAE Int.
  • Guzzella, L., U. Wenger, and R. Martin. 2000. IC-engine downsizing and pressure-wave supercharging for fuel economy. SAE Int.
  • He, X., M. T. Donovan, B. T. Zigler, T. R. Palmer, S. M. Walton, M. S. Wooldridge, and A. Atreya. 2005. An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions. Combust. Flame 142:266–75.
  • Heywood, J. 1988. Internal combustion engine fundamentals. New York: McGraw-Hill Education.
  • Hirooka, H., S. Mori, and R. Shimizu. 2004. Effects of high turbulence flow on knock characteristics. SAE Int.
  • Kagan, L., and G. Sivashinsky. 2013. Hydrodynamic aspects of end-gas autoignition. Proc. Combust. Inst. 34:857–63.
  • Kagan, L. S., P. V. Gordon, and G. I. Sivashinsky. 2012. A minimal model for end-gas autoignition. Combust. Theory Modelling 16:1–12.
  • Kalghatgi, G., H. Levinsky, and M. Colket. 2018. Future transportation fuels. Prog. Energy Combust. Sci. 69:103–05.
  • Kettner, M., M. Rothe, A. Velji, U. Spicher, D. Kuhnert, and R. Latsch. 2005. A new flame jet concept to improve the inflammation of lean burn mixtures in SI engines. SAE Trans. 1549–57.
  • Lamoureux, N., N. Djebaili-Chaumeix, C.-E. J.-E. T. Paillard, and F. Science 2003. Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method. 27, 385–93.
  • Matekunas, F. A. 1979. A schlieren study of combustion in a rapid compression machine simulating the spark ignition engine. Symposium (International) on Combustion, 17(1): 1283–94.
  • Mattarelli, E., C. A. Rinaldini, and E. Agostinelli. 2016. Comparison of supercharging concepts for SI engine downsizing. SAE Int.
  • Mittal, G., and A. Bhari. 2013. A rapid compression machine with crevice containment. Combust. Flame 160:2975–81.
  • Nandakumar Kartha, B., S. Vijaykumar, and P. Reddemreddy. 2016. Thermodynamic split of losses analysis of a single cylinder gasoline engine with multiple spark plug—ignition coil configurations. SAE Tech. Pap. 32–38.
  • Okui, S., and M. Matsuki 2002. Development of a 1.3l engine for hybrid vehicle. society of automotive engineers of Japan.
  • Pan, J., H. Wei, G. Shu, Z. Chen, & P. Zhao. (2016). The role of low temperature chemistry in combustion mode development under elevated pressures. Combustion and Flame,174: 179–193.
  • Petitjean, D., L. Bernardini, C. Middlemass, and S. M. Shahed. 2004. Advanced gasoline engine turbocharging technology for fuel economy improvements. SAE Int.
  • Qi, Y., Z. Wang, J. Wang, and X. He. 2015. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock. Combust. Flame 162:4119–28.
  • Robert, A., S. Richard, O. Colin, and T. Poinsot. 2015. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combust. Flame 162:2788–807.
  • Takashima, Y., H. Tanaka, and T. Sako. 2012. Evaluation of the effects of combustion by multi-ignition in natural gas engines. SAE Tech. Pap.
  • Wang, Y. 2020. The mechanism of chemical kinetics and shock dynamics induced detonation under high temperature and pressure conditions in engines. Ph.D., Tsinghua University.
  • Wang, Y., W. Liu, Y. Qi, and Z. Wang. 2019. The impact of spark-igniting configuration on detonation onset in a rapid compression machine.ICDERS (BeiJing).
  • Wang, Y., Y. Qi, W. Liu, and Z. Wang. 2020. Investigation of methanol ignition phenomena using a rapid compression machine. Combust. Flame 211:147–57.
  • Wang, Z., H. Liu, and R. D. Reitz. 2017. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 61:78–112.
  • Yamaguchi, S., T. Kashiwazaki, M. Nishioka, E. Takahashi, H. Furutani, H. Kojima, and J. Miyata. 2015. Dual-point laser ignition and its location effects on combustion in lean-burn gas engine. SAE Int. J. Engines 8:1435–46.
  • Yu, H., C. Qi, and Z. J. P. O. T. C. I. Chen. 2017. Effects of flame propagation speed and chamber size on end-gas autoignition. 36, 3533–41.
  • Yu, S., K. Xie, X. Yu, M. Wang, M. Zheng, X. Han, and J. Tjong. 2016. High energy ignition strategies for diluted mixtures via a three-pole igniter. SAE Tech. Pap.
  • Zádor, J., C. A. Taatjes, and R. X. Fernandes. 2011. Kinetics of elementary reactions in low-temperature autoignition chemistry. Prog. Energy Combust. Sci. 37:371–421.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.