241
Views
6
CrossRef citations to date
0
Altmetric
Research Article

The Spontaneous Combustion of Chemically Activated Carbons from South African Coal Waste

, , , & ORCID Icon
Pages 2025-2041 | Received 09 May 2020, Accepted 19 Nov 2020, Published online: 03 Dec 2020

References

  • Abdulsalam, J., J. Mulopo, B. Oboirien, S. Bada, and R. Falcon. 2019. Experimental evaluation of activated carbon derived from South Africa discard coal for natural gas storage. Int. J. Coal Sci. Technol. 6:459–77.
  • Abdulsalam, J., J. Mulopo, S. Bada, and B. Oboirien. 2020a. Natural gas storage properties of adsorbents synthesised from three different coal waste in South Africa. Fuel 267:117157.
  • Abdulsalam, J., M. Onifade, J. Mulopo, and S. Bada. 2020b. Self-heating characteristics of materials for producing activated carbon. Int. J. Coal Prep. Util 1–17.https://doi.org/https://doi.org/10.1080/19392699.2020.1729138
  • Ahmadpour, A., and D. Do. 1996. The preparation of active carbons from coal by chemical and physical activation. Carbon 34:471–79.
  • Avila, C., T. Wu, and E. Lester. 2014. Petrographic characterization of coals as a tool to detect spontaneous combustion potential. Fuel 125:173–82.
  • Azevedo, D. C., J. C. S. Araujo, M. Bastos-Neto, A. E. B. Torres, E. F. Jaguaribe, and C. L. Cavalcante. 2007. Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater. 100:361–64.
  • Banerjee, S. C. 2000. Prevention and combating mine fires. New Delhi, India: CRC Press.
  • Beamish, B. B., M. A. Barakat, and J. D. S. George. 2001. Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. Int. J. Coal Geol. 45:217–24.
  • Bénard, P., and R. Chahine. 2007. Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr Mater 56:803–08.
  • Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60:309–19.
  • Buettner, L. C., C. A. Leduc, and T. G. Glover. 2014. Instantaneous ignition of activated carbon. Ind Eng Chem Res 53:15793–97.
  • Burchell, T. D. 1999. Carbon materials for advanced technologies. Amsterdam: Elsevier.
  • Carvalho, A., B. Cardoso, J. Pires, and M. B. De Carvalho. 2003. Preparation of activated carbons from cork waste by chemical activation with KOH. Carbon 41:2873–76.
  • Caturla, F., M. Molina-Sabio, and F. Rodriguez-Reinoso. 1991. Preparation of activated carbon by chemical activation with ZnCl2. Carbon 29:999–1007.
  • Dudzińska, A. 2014. The effect of pore volume of hard coals on their susceptibility to spontaneous combustion. J. Chem. 2014.
  • Eroglu, H. 1992. Factors affecting spontaneous combustion liability index. Johannesburg, South Africa: University of the Witwatersrand.
  • Evans, M., E. Halliop, and J. Macdonald. 1999. The production of chemically-activated carbon. Carbon 37:269–74.
  • Falcon, R., and A. Ham. 1988. The characteristics of South African coals. J. South Afr. Inst. Min. Metall. 88:145–61.
  • Fierro, V., V. Torné-Fernández, and A. Celzard. 2007. Methodical study of the chemical activation of Kraft lignin with KOH and NaOH. Microporous Mesoporous Mater. 101:419–31.
  • Gbadamosi, A., M. Onifade, B. Genc, and S. Rupprecht. 2020. Spontaneous combustion liability indices of coal. Combust. Sci. Technol. 1–13. https://doi.org/https://doi.org/10.1080/00102202.2020.1754208
  • Genc, B., and A. Cook. 2015. Spontaneous combustion risk in South African coalfields. J. South Afr. Inst. Min. Metall. 115:563–68.
  • Gouws, M., and L. Wade. 1989. The self-heating liability of coal: Predictions based on composite indices. Min. Sci. Technol. 9:81–85.
  • Gregg, S. J., K. S. W. Sing, and H. Salzberg. 1967. Adsorption surface area and porosity. J. Electrochem. Soc. 114:279C–279C.
  • Hsu, L.-Y., and H. Teng. 2000. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Process. Technol. 64:155–66.
  • Hu, Z., M. P. Srinivasan, and Y. Ni. 2000. Preparation of mesoporous high‐surface‐area activated carbon. Adv. Mater. 12:62–65.
  • Humphreys, D., D. Rowlands, and J. Cudmore Spontaneous combustion of some Queensland coals. Proceedings of ignitions, explosions, and fires in coal mines symposium, 1981. 5–1.
  • Kaji, R., Y. Hishinuma, and Y. Nakamura. 1985. Low temperature oxidation of coals: Effects of pore structure and coal composition. Fuel 64:297–302.
  • Kaymakci, E., and V. Didari. 2001. Relations between coal properties and spontaneous combustion parameters. Turk. J. Eng. Environ. Sci. 26:59–64.
  • Kim, D.-W., H.-S. Kil, K. Nakabayashi, S.-H. Yoon, and J. Miyawaki. 2017. Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model. Carbon 114:98–105.
  • Leonhart, L. S. 1978. An analysis of combustion within surface mine spoils and of its consequent effects on the environment and reclamation practices.
  • Lillo-Ródenas, M., D. Cazorla-Amorós, and A. Linares-Solano. 2003. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 41:267–75.
  • Linares-Solano, A., M. Lillo-Ródenas, J. P. Marco-Lozar, M. Kunowsky, and A. J. Romero-Anaya. 2012. NaOH and KOH for preparing activated carbons used in energy and environmental applications. Int. J. Energy Environ. Econ. 20:355.
  • Lozano-Castello, D., M. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano. 2001. Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. Carbon 39:741–49.
  • Lua, A. C., and T. Yang. 2004. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci. 274:594–601.
  • Mohalik, N., D. Panigrahi, V. Singh, and R. Singh 2009. Assessment of spontaneous heating of coal by differential scanning calorimetric technique-an overview.
  • Nimaje, D., and D. Tripathy. 2016. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel 163:139–47.
  • Nimaje, D. S., D. Tripathy, and S. K. Nanda. 2013. Development of regression models for assessing fire risk of some Indian coals. Int J Intell Syst Appl 2:52–58.
  • Nowicki, P., J. Kazmierczak, and R. Pietrzak. 2015. Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder Technol. 269:312–19.
  • Nugroho, Y. S., A. Mcintosh, and B. Gibbs. 2000. Low-temperature oxidation of single and blended coals. Fuel 79:1951–61.
  • Omri, A., and M. Benzina. 2012. Characterization of activated carbon prepared from a new raw lignocellulosic material: Ziziphus spina-christi seeds. Journal de la Société Chimique de Tunisie 14:175–83.
  • Onifade, M. 2019. Spontaneous combustion liability of coals and coal-shales in South African coalfields.
  • Onifade, M., and B. Genc. 2019. Spontaneous combustion liability of coal and coal-shale: A review of prediction methods. Int. J. Coal Sci. Technol. 1–18. https://doi.org/https://doi.org/10.1007/s40789-019-0242-9
  • Otowa, T., R. Tanibata, and M. Itoh. 1993. Production and adsorption characteristics of MAXSORB: High-surface-area active carbon. Gas Sep. Purif. 7:241–45.
  • Panella, B., M. Hirscher, and S. Roth. 2005. Hydrogen adsorption in different carbon nanostructures. Carbon 43:2209–14.
  • Park, S.-J., and W.-Y. Jung. 2002. Effect of KOH activation on the formation of oxygen structure in activated carbons synthesized from polymeric precursor. J. Colloid Interface Sci. 250:93–98.
  • Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L., Júnior, O. O. S., Visentainer, J. V. & Almeida, V. C. 2016. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm, and thermodynamic studies. Chemical Engineering Journal, 288: 778–788.
  • Research, M. a. M. 2017. Activated carbon market - global forecast to 2021. Market Research Report.
  • Roskill, I. 2008. The economics of activated Carbon. London: Roskill Information Services Ltd.
  • Rouquerol, J., P. Llewellyn, and F. Rouquerol. 2007. Is the BET equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal 160:1016.
  • Said, K. O., M. Onifade, A. I. Lawal, and J. M. Githiria. 2020. Computational intelligence-based models for predicting the spontaneous combustion liability of coal. Int. J. Coal Prep. Util 1–25. https://doi.org/https://doi.org/10.1080/19392699.2020.1741558
  • Sevilla, M., A. Fuertes, and R. Mokaya. 2011. Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. Int. J. Hydrogen Energy 36:15658–63.
  • Suzin, Y., L. Buettner, and C. Leduc. 1998. Behavior of impregnated activated carbons heated to the point of oxidation. Carbon 36:1557–66.
  • Suzin, Y., L. Buettner, and C. Leduc. 1999. Characterizing the ignition process of activated carbon. Carbon 37:335–46.
  • Tadda, M., A. Ahsan, A. Shitu, M. Elsergany, T. Arunkumar, B. Jose, M. A. Razzaque, and N. N. Daud. 2016. A review on activated carbon: Process, application, and prospects. J Adv. Civ. Eng. Pract. Res. 2:7–13.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87:1051–69.
  • Tseng, R.-L., and S.-K. Tseng. 2005. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. J. Colloid Interface Sci. 287:428–37.
  • Uludag, S., H. R. Phillips, and N. Eroglu 2001. Assessing spontaneous combustion risk in South African coal mines using a GIS tool. Unpublished MSc Dissertation. University of the Witwatersrand, Johannesburg. 154p.
  • Vaan Graan, M., and J. Bunt Evaluation of TGA method to predict the ignition temperature and spontaneous combustion propensity of coals of different rank. International conference on advances in science, engineering, technology, and natural resources (ICASETNR-16), Parys, South Africa, 2016. 24–25.
  • Vamvuka, D., S. Troulinos, and E. Kastanaki. 2006. The effect of mineral matter on the physical and chemical activation of low-rank coal and biomass materials. Fuel 85:1763–71.
  • Wade, L., M. J. Gouws, and H. R. Phillips. An apparatus to establish the spontaneous combustion propensity of South African coals.1987. Proceedings of the Symposium on Safety in Coal Mines, CSIR, 7.1-7.2, Pretoria, South Africa.
  • Wang, H., Q. Gao, and J. Hu. 2009. High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131:7016–22.
  • Wang, X., R. He, and Y. Chen. 2008. Evolution of porous fractal properties during coal devolatilization. Fuel 87:878–84.
  • Whitehead, W. L., and I. A. Breger. 1950. Vacuum differential thermal analysis. Science 111:279–81.
  • Zou, Y., and B.-X. Han. 2001. Preparation of activated carbons from Chinese coal and hydrolysis lignin. Adsorpt. Sci. Technol. 19:59–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.