305
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Data Analytics Method For Detecting Extinction Precursors To Lean Blowout In Spray Flames

, , , &
Pages 2597-2612 | Received 26 Jul 2020, Accepted 03 Jan 2021, Published online: 25 Jan 2021

References

  • Allison, P. M., J. A. Sidey, and E. Mastorakos. 2018. Lean blowoff scaling of swirling, bluff-body stabilized spray flames. 2018 AIAA Aerospace Sci Meeting. doi:10.2514/6.2018-1421.
  • Burger, V., A. Yates, and C. Viljoen. 2012. Influence of fuel physical properties and reaction rate on threshold heterogeneous gas turbine combustion. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark.
  • Chterev, I. 2017. Flow characterization of lifted flames in swirling, reacting flows. Ph.D. Dissertation. Georgia Institute of Technology.
  • Cohen, J. M., and T. J. Rosfjord. 1993. Influences on the sprays formed by high-shear fuel nozzle/swirler assemblies. J Propulsion Power 9 (1):16–27. doi:10.2514/3.51351.
  • Colborn, J., J. Heyne, T. Hendershott, S. Stouffer, E. Peiffer, and E. Corporan. 2020. Fuel and operating condition effects on lean blowout in a swirl-stabilized single-cup combustor. In AIAA Scitech 2020 Forum.
  • Colket, M., S. Zeppieri, Z. Dai, and D. Hautman. 2012. Fuel research at UTRC. In Multi-agency coordinating council for combustion research, 5th annual research meeting.
  • Corporan, E., R. Casselberry, C. Klingshirn, M. Wagner, M. DeWitt, J. Edwards, P. Wrzesinski, S. Stouffer, and T. Hendershott. 2019. Fuel effects on the lean operational limits of a T63 turboshaft engine. In AIAA Scitech 2019 Forum.
  • Culbertson, B., and R. Williams. 2017. Alternative aviation fuels for use in military apus and engines versatile affordable advanced turbine engine (vaate), phase 2 and 3. Delivery Order 0007: Alternative Aviation Fuels for Use in Military Auxiliary Power Units (APUs) and Engines.
  • Emerson, B., J. O’Connor, M. Juniper, and T. Lieuwen. 2012. Density ratio effects on reacting bluff-body flow field characteristics. J Fluid Mech 706:219–50. doi:10.1017/jfm.2012.248.
  • Erickson, R. R., and M. C. Soteriou. 2011. The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames. Combustion and Flame 158 (12):2441–57. doi:10.1016/j.combustflame.2011.05.006.
  • Esclapez, L., P. C. Ma, E. Mayhew, R. Xu, S. Stouffer, T. Lee, H. Wang, and M. Ihme. 2017. Fuel effects on lean blow-out in a realistic gas turbine combustor. Combustion and Flame 181:82–99. doi:10.1016/j.combustflame.2017.02.035.
  • Evans, M. J., J. A. M. Sidey, J. Ye, P. R. Medwell, B. B. Dally, and E. Mastorakos. 2019. Temperature and reaction zone imaging in turbulent swirling dual-fuel flames. Proc Combustion Ins 37 (2):2159–66. doi:10.1016/j.proci.2018.07.076.
  • Giusti, A., and E. Mastorakos. 2017. Detailed chemistry LES/CMC simulation of a swirling ethanol spray flame approaching blow-off. Proc Combustion Ins 36 (2):2625–32. doi:10.1016/j.proci.2016.06.035.
  • Grohmann, J., B. Rauch, T. Kathrotia, W. Meier, and M. Aigner. 2018. Influence of single-component fuels on gas-turbine model combustor lean blowout. J Propulsion Power, 34 1.
  • Hyndman, R. J., and Y. Khandakar. 2008. Automatic time series forecasting: The forecast package for R. J Stat Softw 27:3. doi:10.18637/jss.v027.i03.
  • Juddoo, M., and A. R. Masri. 2011. High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation. Combustion and Flame 158 (5):902–14. doi:10.1016/j.combustflame.2011.02.003.
  • Macgregor, J. F., and T. J. Harris. 1993. The exponentially weighted moving variance. J Qual Tech 25 (2):106–18. doi:10.1080/00224065.1993.11979433.
  • Mondal, S., S. De, A. Mukhopadhyay, S. Sen, and A. Ray. 2020. Early prediction of lean blowout from chemiluminescence time series data. In Combustion Science and Technology.
  • Montgomery, D. C. 2009. Introduction to statistical quality control. Hoboken Wiley Copyright © By John Wiley and Sons, Inc.
  • Nair, S., and T. Lieuwen. 2005. Acoustic detection of blowout in premixed flames. J Propulsion Power 21 (1):32–39. doi:10.2514/1.5658.
  • Nair, S., and T. Lieuwen. 2007. Near-blowoff dynamics of a bluff-body stabilized flame. J Propulsion Power 23 (2):421–27. doi:10.2514/1.24650.
  • Pham, H. T., and B.-S. Yang. 2010. Estimation and forecasting of machine health condition using ARMA/GARCH model. Mech Syst Signal Process 24 (2):546–58. doi:10.1016/j.ymssp.2009.08.004.
  • Prakash, S., Y. Neumeier, and B. Zinn. 2006. Investigation of mode shift dynamics of lean, premixed flames. In 44th AIAA aerospace sciences meeting and exhibit.
  • Rock, N., I. Chterev, B. Emerson, S. H. Won, J. Seitzman, and T. Lieuwen. 2019. Liquid fuel property effects on lean blowout in an aircraft relevant combustor. J Eng Gas Turbines Power 141:7. doi:10.1115/1.4042010.
  • Rock, N., B. Emerson, J. Seitzman, and T. Lieuwen. 2020. Near-lean blowoff dynamics in a liquid fueled combustor. Combustion and Flame 212:53–66. doi:10.1016/j.combustflame.2019.10.010.
  • Shanbhogue, S. J., S. Husain, and T. Lieuwen. 2009. Lean blowoff of bluff body stabilized flames: Scaling and dynamics. Progress Energ Combustion Sci 35 (1):98–120. doi:10.1016/j.pecs.2008.07.003.
  • Steinberg, A. M., I. Boxx, C. M. Arndt, J. H. Frank, and W. Meier. 2011. Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF. Proc Combustion Ins 33 (1):1663–72. doi:10.1016/j.proci.2010.06.134.
  • Stöhr, M., I. Boxx, C. Carter, and W. Meier. 2011. Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proc Combustion Ins 33 (2):2953–60. doi:10.1016/j.proci.2010.06.103.
  • Stouffer, S., T. Hendershott, J. R. Monfort, J. Diemer, E. Corporan, P. Wrzesinski, and A. W. Caswell. 2017. Lean blowout and ignition characteristics of conventional and surrogate fuels measured in a swirl stabilized combustor. 55th AIAA Aerospace Sci Meeting. doi:10.2514/6.2017-1954.
  • Thiruchengode, M. 2006. Sensing and dynamics of lean blowout in a swirl dump combustor. Ph.D. Dissertation. Georgia Institute of Technology.
  • Unni, V. R., and R. I. Sujith. 2016. Precursors to blowout in a turbulent combustor based on recurrence quantification. In Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT. https://arc.aiaa.org/doi/abs/10.2514/6.2016-4649
  • Yi, T., and E. J. Gutmark. 2007. Real-time prediction of incipient lean blowout in gas turbine combustors. Aiaa J. 45 (7):1734–39. doi:10.2514/1.25847.
  • Yuan, R., J. Kariuki, A. Dowlut, R. Balachandran, and E. Mastorakos. 2015. Reaction zone visualisation in swirling spray n-heptane flames. Proc Combustion Ins 35 (2):1649–56. doi:10.1016/j.proci.2014.06.012.
  • Yuan, R., J. Kariuki, and E. Mastorakos. 2018. Measurements in swirling spray flames at blow-off. Int J Spray Combustion Dynam 10 (3):185–210. doi:10.1177/1756827718763559.
  • Zhang, Q. (2008). Lean blowoff characteristics of swirling H2/CO/CH4 flames. Ph.D. Dissertation. Georgia Institute of Technology.
  • Zhang, Q., S. J. Shanbhogue, and T. Lieuwen. 2010. Dynamics of premixed H2/CH4 flames under near blowoff conditions. J Eng Gas Turbines Power 132:11. doi:10.1115/1.4000601.
  • Zheng, L., J. Cronly, E. Ubogu, I. Ahmed, Y. Zhang, and B. Khandelwal. 2019. Experimental investigation on alternative fuel combustion performance using a gas turbine combustor. Appl. Energy 238:1530–42. doi:10.1016/j.apenergy.2019.01.175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.