264
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Investigation on Stability and Chemiluminescence Characterization for Liftoff Inverse Diffusion Flames

, , , ORCID Icon, & ORCID Icon
Pages 2461-2479 | Received 13 Oct 2020, Accepted 04 Jan 2021, Published online: 19 Jan 2021

References

  • Afify, A., A. N. Elsheemy, and M. M. Kamal. 2015. Enhanced power output from a gaseous fuel burner involving pulsed spark discharge. Combust. Sci. Technol. 187:1425–51.
  • Aggarwal, S. K., I. K. Puri, and X. A. Qin. 2001. Numerical and experimental investigation of inverse triple flames. Phys. Fluids 13:265–75.
  • Akbarzadeh, M., and M. Birouk. 2013. Liftoff of a co-flowing non-premixed turbulent methane flame: Effect of the geometrical parameters of a circular fuel nozzle. Combust. Sci. Technol. 185 (10):1441–63.
  • Azzoni, R., S. Ratti, S. K. Aggarwal, and I. K. Puri. 1999. The structure of triple flames stabilized on a slot burner. Combust Flame 119:23.
  • Barakat, H. Z., et al. 2015. Performance enhancement of inverse diffusion flame burners with distributed ports. Proc Combust Inst 229(2): 160–175.
  • Beér, J. M., and N. A. Chigier. 1972. Combustion Aerodynamics. London: Applied Science Publishers Ltd.
  • Bhatia, P., V. R. Katta, S. S. Krishnan, et al. 2012. Simulations of normal and inverse laminar diffusion flames under oxygen enhancement and gravity variation. Combust. Theor. Model 16 (5):774–98.
  • Bindar, Y., and A. Irawan. 2002. Size and structure of LPG and hydrogen inverse diffusion flames at high level of fuel excess. Combust. Energy 33:124–30.
  • Bowman, C. T., and D. J. Seery. 1968. Chemiluminescence in the high-temperature oxidation of methane. Combust. Flame 12:611–14.
  • Chen, Y., C. Chang, K. L. Pan, et al. 1998. Flame lift-off and stabilization mechanisms of non-premixed jet flames on a bluff-body burner. Combust. Flame 115 (1–2):51–65.
  • Choi, B. C., and S. H. Chung. 2013. An experimental study on turbulent lifted flames of methane in coflow jets at elevated temperatures. Fuel 103:956–62.
  • Chung, S. H., and B. J. Lee, 1991. On the characteristics of laminar lifted flames in a non premixed jet combustion, Combust Flame, 86 : 62–72 1–2 doi:https://doi.org/10.1016/0010-2180(91)90056-H
  • Elgamal, G., M. M. Kamal, and A. M. Abdulaziz. 2013. Swirl and cross-flow effects on vitiated jet flames. Combust. Sci. Technol. 185:310–35.
  • Farokhi, M., and M. Birouk. 2016. Application of eddy dissipation concept for modeling biomass combustion, part 1: Assessment of the model coefficients. Energy Fuels 30 (12):10789–99.
  • Gaydon, A. G. 1957. The spectroscopy of flames. Chapman and Hall: London.
  • Guiberti, T. F., W. R. Boyette, W. L. Roberts, and A. R. Masri. 2019. Pressure effects and transition in the stabilization mechanism of turbulent lifted flames. Proc. Combust. Inst 37 (2):2167–74.
  • Gutman, D., E. A. Hardwidge, and F. A. Dougherty. 1967. Shock‐tube study of the recombination rate of hydrogen atoms with oxygen molecules. J. Chem. Phys 47:4400–07.
  • He, L., Q. Guo, Y. Gong, F. Wang, and G. Yu. 2019. Investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames. Combust. Flame 201:12–22.
  • Hu, C., Y. Gong, X. Song, et al. 2017. Investigations of chemiluminescence characteristics in CH4/O2 jet diffusion flames impinging on the flat plate. Combust. Sci. Technol. 189 (12):2195–208.
  • Jeongseog, O., and N. Dongsoon. 2015. Flame characteristics of a non-premixed oxy-fuel jet in a lab-scale furnace. Energy. 81: 328–343.
  • Kalaghatigi, G. 1984. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41:17.
  • Kamal, M. M. 2007. Soot formation and oxidation in normal and inverse diffusion flames. J. Power Energy 221:481–95.
  • Kamal, M. M. 2008. Innovative study of co-axial normal and inverse diffusion flames. J. Power Energy 222:253–70.
  • Kamal, M. M. 2013. A comparative study of the port geometrical effects on sharp corners’ jet triple flames. Exp. Thermal Fluid Sci. 51:149–63.
  • Kamal, M. M. 2015. Development of a cylindrical burner comprising multiple pairs of opposing partially premixed or inverse diffusion flames. J. Power Energy 229:992–1006.
  • Kaplan, C. R., and K. Kailasanath. 2001. Flow-field effects on soot formation in normal and inverse methane air diffusion flames. Combustion Flame 124:275–81.
  • Kashkousha, O. A., M. M. Kamal, A. M. Abdulaziz, and M. A. Nosier. 2015. Inverse diffusion and partially premixed flames with elliptical/swirling- and cross-flows. J. Power Energy 229:44–59.
  • Kim, H. J., J. Choe, and H. D. Shin. 2010. Investigation of the structures of attached and lifted flames with various ignition positions over a triple concentric burner in the hysteresis regime. Energy Fuels 24 (1):324–32.
  • Kim, T. Y., S. Choi, K. H K, et al. 2016. Combustion properties of gaseous CH4/O2 coaxial jet flames in a single-element combustor. Fuel 184:28–35.
  • Kolb, M., D. Ahrens, C. Hirsch, and T. Sattelmayer. 2016. A model for predicting the lift-off height of premixed jets in vitiated cross flow. J. Eng. Gas Turbines Power 138 (819018).
  • Krishnamoorthy, G., and M. Ditaranto. 2018. Predicting chemical flame lengths and lift-off heights in enclosed, oxy-methane diffusion flames at varying O2/CO2 oxidizer dilution ratios. J. Power Tech 97 (4):370–77.
  • Lee, B. J., J. S. Kim, and S. H. Chung. 1994. Effect of dilution on the liftoff of non-premixed jet flames. Symp. Combust. 25 (1):1175–81.
  • Li, X., Z. Dai, Y. Xu, C. Li, Z. Zhou, and F. Wang. 2015. Inverse diffusion flame of CH4–O2 in hot syngas coflow. Int. J. Hydrogen Energy 40 (46):16104–14.
  • Li, Z. S., B. Li, Z. W. Sun, et al. 2010. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame. Combust. Flame 157 (6):1087–96.
  • Liu, F., and G. J. Smallwood. 2011. Control of the structure and sooting characteristics of a coflow laminar methane/air diffusion flame using a central air jet: An experimental and numerical study. Proc. Combust. Inst 33 (1):1063–70.
  • Liu, Y., J. Tan, M. Wan, et al. 2020. Quantitative measurement of OH* and CH* chemiluminescence in jet diffusion flames. ACS Omega 5 (26):15922–30.
  • Mahesh, S., and D. P. Mishra. 2008. Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner. Fuel 87 (12):2614–19.
  • Marin, M., and F. Baillot. 2016. Experimental study of the lifting characteristics of the leading-edge of an attached non-premixed jet-flame: Air-side or fuel-side dilution. Combust. Flame 171:264–80.
  • Oh, J., and D. Noh. 2015. Flame characteristics of a non-premixed oxy-fuel jet in a lab-scale furnace. Energy 81:328–43.
  • Sidebotham, G. W., and I. Glassman. 1992. Flame temperature, fuel structure and fuel concentration effect on soot formation in inverse diffusion flames. Combust Flame 90:269–83.
  • Smith, G. P., J. Luque, C. Park, et al. 2002. Low pressure flame determinations of rate constants for OH (A) and CH (A) chemiluminescence. Combust. Flame 131 (1–2):59–69.
  • Sobiesiak, A., and J. C. Wentzell. 2005. Characteristics and structure of inverse diffusion flame of natural gas. Proc. Combust. Inst. 30:743–49.
  • Song, X., Y. Gong, G. Yu, et al. 2015. Chemiluminescence studies of coke oven gas/O2 coflow normal/inverse diffusion flames. J. Eng. Gas Turbines Power 137:081505.1–081505.10.
  • Stephen, R. 2009. An introduction to combustion: Concepts and applications. Vols. 2, Chap. 13, 3rd ed., 385–88.
  • Sze, L. K., C. S. Cheung, and C. W. Leung. 2006. Appearance, temperature and NOx emission of two inverse diffusion flames with different port design. Combust Flame 144:237–48.
  • Wang, F., J. Mi, and P. Li. 2013. Combustion regimes of a jet diffusion flame in hot co-flow. Energy Fuels 27 (6):3488–98.
  • Zhang, T., Q. Guo, X. Song, et al. 2013. The chemiluminescence and structure properties of normal/inverse diffusion flames. Asian J. Spectr. 2013:1–7.
  • Zhen, H. S., C. W. Leung, and C. S. Cheung. 2011. Combustion characteristics of a swirling inverse diffusion flame upon oxygen content variation. Appl. Energy 88:2925–33.
  • Zhu, H., C. Hu, Q. Guo, et al. 2019. Investigation on chemiluminescence and structure characteristics in CH4/O2 diffusion flames. Exp. Therm. Fluid Sci. 102:595–602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.