810
Views
7
CrossRef citations to date
0
Altmetric
Research Article

A Comparative Study of Natural Gas and Biogas Combustion in A Swirling Flow Gas Turbine Combustor

ORCID Icon, ORCID Icon, &
Pages 2613-2640 | Received 08 Oct 2020, Accepted 25 Jan 2021, Published online: 22 Feb 2021

References

  • Al-Abdeli, Y. M., and A. R. Masri. 2003. ‘Stability characteristics and flowfields of turbulent non-premixed swirling flames’. Combust. Theory Modelling 7 (4):731–66. doi:10.1088/1364-7830/7/4/007.
  • Amani, E., M. R. Akbari, and S. Shahpouri. 2018. ‘Multi-objective CFD optimizations of water spray injection in gas-turbine combustors’. Fuel 227:267–78. doi:10.1016/j.fuel.2018.04.093.
  • Amani, E., P. Rahdan, and S. Pourvosoughi. 2019. ‘Multi-objective optimizations of air partitioning in a gas turbine combustor’. Appl. Therm. Eng. 148:1292–302. doi:10.1016/j.applthermaleng.2018.12.015.
  • Ansari, M., and E. Amani. 2018. ‘Micro-combustor performance enhancement using a novel combined baffle-bluff configuration’. Chem Eng Sci 175:243–56. doi:10.1016/j.ces.2017.10.001.
  • Arjmandi, H. R., and E. Amani. 2015. ‘A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber’. Energy 81:706–18. doi:10.1016/j.energy.2014.12.077.
  • Asgari, B., and E. Amani. 2017. ‘A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors’. Appl. Energy 203:696–710. doi:10.1016/j.apenergy.2017.06.080.
  • Bhoi, P. R., and S. A. Channiwala. 2008. ‘Optimization of producer gas fired premixed burner’. Renewable Energy 33 (6):1209–19. doi:10.1016/j.renene.2007.07.014.
  • Birouk, M., M. Saediamiri, and J. A. Kozinski. 2014. ‘Non-premixed turbulent biogas flame: Effect of the co-airflow swirl strength on the stability limits’. Combustion Science and Technology 186 (10):1460–77. doi:10.1080/00102202.2014.934626.
  • Biswas, W. K. 1994. Use of biogas as diesel engine fuel: Master’s thesis, Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
  • Bothien, M. R., A. Ciani, J. P. Wood, and G. Fruechtel. 2019. ‘Toward decarbonized power generation with gas turbines by using sequential combustion for burning hydrogen’. Journal of Engineering for Gas Turbines and Power 141 (12):121013. doi:10.1115/1.4045256.
  • Boyce, M. P. 2012. Gas Turbine Engineering Handbook. 4th edn ed. Waltham, MA: Elsevier Inc.
  • Burmberger, S., and T. Sattelmayer. 2011. ‘Optimization of the aerodynamic flame stabilization for fuel flexible gas turbine premix burners’. Journal of Engineering for Gas Turbines and Power 133 (10):101501. doi:10.1115/1.4003164.
  • Chen, J., Y. Wang, H. Liu, and Y. Weng. 2017. ‘Experimental study of flow characteristics of enhanced biogas lean premixed nozzle of micro gas turbine by PIV’. Appl. Therm. Eng. 121:90–102. doi:10.1016/j.applthermaleng.2017.04.045.
  • Chmielewski, M., and M. Gieras. 2017. ‘Impact of variable geometry combustor on performance and emissions from miniature gas turbine engine’. Fuel 90 (2):257–64.
  • Conrado, A. C., P. T. Lacava, A. C. P. Filho, and M. de Souza Sanches. 2004. Basic design principles for gas turbine combustor, in ‘Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering - ENCIT. Rio de Janeiro: Brazil. 2004ʹ, 29 November-3 December 2004.
  • Effuggi, A., D. Gelosa, M. Derudi, and R. Rota. 2008. ‘Mild combustion of methane-derived fuel mixtures: Natural gas and biogas’. Combustion Science and Technology 180 (3):481–93. doi:10.1080/00102200701741368.
  • Elbaz, A. M., and W. L. Roberts. 2016. ‘Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions’. Fuel 169:120–34. doi:10.1016/j.fuel.2015.12.015.
  • Elbaz, A. M., S. Yu, X. Liu, X. S. Bai, I. Khesho, and W. L. Roberts. 2019. ‘An experimental/numerical investigation of the role of the quarl in enhancing the blowout limits of swirl-stabilized turbulent non-premixed flames’. Fuel 236:1226–42. doi:10.1016/j.fuel.2018.09.064.
  • Emami, M. D., H. Shahbazian, and B. Sunden. 2019. ‘Effect of operational parameters on combustion and emissions in an industrial gas turbine combustor’. Journal of Engineering for Gas Turbines and Power 141 (1):012202. doi:10.1115/1.4042418.
  • Farokhipour, A., E. Hamidpour, and E. Amani. 2018. ‘A numerical study of nox reduction by water spray injection in gas turbine combustion chambers’. Fuel 212:173–86. doi:10.1016/j.fuel.2017.10.033.
  • Fischer, M., and X. Jiang. 2015. ‘An investigation of the chemical kinetics of biogas combustion’. Fuel 150:711–20. doi:10.1016/j.fuel.2015.01.085.
  • Fischer, M., and X. Jiang. 2017. ‘Numerical studies of CO formation during biogas combustion’. Energy Procedia 142:426–31. doi:10.1016/j.egypro.2017.12.067.
  • Fuligno, L., D. Micheli, and C. Poloni. 2009. ‘An integrated approach for optimal design of micro gas turbine combustors’. Journal of Thermal Science 18 (2):173–84. doi:10.1007/s11630-009-0173-7.
  • Gökalp, I., and E. Lebas. 2004. ‘Alternative fuels for industrial gas turbines (AFTUR)’. Appl. Therm. Eng. 24 (11):1655–63. doi:10.1016/j.applthermaleng.2003.10.035.
  • Göke, S., S. Schimek, S. Terhaar, T. Reichel, K. Göckeler, O. Krüger, J. Fleck, P. Griebel, and C. O. Paschereit. 2014. ‘Influence of pressure and steam dilution on NOx and CO emissions in a premixed natural gas flame’. Journal of Engineering for Gas Turbines and Power 136 (9):091508. doi:10.1115/1.4026942.
  • Guessab, A., A. Aris, M. Cheikh, and T. Baki. 2016. ‘Combustion of methane and biogas fuels in gas turbine can-type combustor model’. Journal of Applied Fluid Mechanics 9 (5):2229–38. doi:10.18869/acadpub.jafm.68.236.24289.
  • Guoyu, D., H. Xiaomin, Z. Ziqiang, A. Bokun, S. Yaoyu, and Z. Yixiao. 2014. ‘Effect of dilution holes on the performance of a triple swirler combustor’. Chinese Journal of Aeronautics 27 (6):1421–29. doi:10.1016/j.cja.2014.10.008.
  • Hajitaheri, S. (2012), Design optimization and combustion simulation of two gaseous and liquid-fired combustors, Master’s thesis, Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada. URL: http://hdlhandlenet/10012/6730 (Accessed: 22 October 2019)
  • Heywood, J. B. 1988. Internal combustion engine fundamentals. In McGraw-Hill series in mechanical engineering. New York: McGraw-Hill Inc.
  • Hobson, P. N., S. Bousfield, and R. Summers. 1981. Methane Production from Agricultural and Domestic Wastes, Energy from Wastes series. 1st edn ed. Applied Science Publishers Limited: London.
  • Hosseini, S. E., G. Bagheri, and M. A. Wahid. 2014. ‘Numerical investigation of biogas flameless combustion’. Energy Convers. Manage. 81:41–50. doi:10.1016/j.enconman.2014.02.006.
  • Hosseini, S. E., and M. A. Wahid. 2013. ‘Biogas utilization: Experimental investigation on biogas flameless combustion in lab-scale furnace’. Energy Convers. Manage. 74:426–32. doi:10.1016/j.enconman.2013.06.026.
  • Hosseini, S. E., and M. A. Wahid. 2014. ‘Development of biogas combustion in combined heat and power generation’. Renewable and Sustainable Energy Reviews 40:868–75. doi:10.1016/j.rser.2014.07.204.
  • Hosseini, S. E., and M. A. Wahid. 2015. ‘Effects of burner configuration on the characteristics of biogas flameless combustion’. Combustion Science and Technology 187 (8):1240–62. doi:10.1080/00102202.2015.1031224.
  • Iki, N., A. Gruber, and H. Yoshida. 2007. Anumerical and an experimental study for optimization of a small annular combustor, in ‘Challenges of Power Engineering and Environment’, 1429–1435. Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-76694-0_269
  • İlbaş, M., S. Karyeyen, and İ. Yılmaz. 2016. ‘Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor’. Int. J. Hydrogen Energy 41 (17):7185–91. doi:10.1016/j.ijhydene.2015.12.107.
  • İlbaş, M., and M. Şahin. 2017. ‘Effects of turbulator angle and hydrogen addition on a biogas turbulent diffusion flame’. Int. J. Hydrogen Energy 42 (40):25735–43. doi:10.1016/j.ijhydene.2017.04.111.
  • İlbaş, M., M. Şahin, and S. Karyeyen. 2016. ‘Combustion behaviours of different biogases in an existing conventional natural gas burner: An experimental study’. International Journal of Renewable Energy Research 6 (3):1178–88.
  • İlbaş, M., M. Şahin, and S. Karyeyen. 2018. ‘3D numerical modelling of turbulent biogas combustion in a newly generated 10 KW burner’. Journal of the Energy Institute 91 (1):87–99. doi:10.1016/j.joei.2016.10.004.
  • Iqbal, S., A. C. Benim, S. Fischer, F. Joos, D. Kluß, and A. Wiedermann. 2016. ‘Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor’. Journal of Thermal Science 25 (5):460–69. doi:10.1007/s11630-016-0885-4.
  • ISO. 1995: Natural gas – Calculation of calorific values, density, relative density and Wobbe index from composition (ISO 6796:1995), Standard, International Organization for Standardization, Geneva, CH.
  • Janiga, G., and D. Thévenin. 2007. ‘Reducing the CO emissions in a laminar burner using different numerical optimization methods’. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 221 (5):647–55.
  • Jaravel, T. 2016. Prediction of pollutants in gas turbines using Large Eddy Simulation, Doctoral dissertation, École doctorale Mécanique, Energtique, Génie Civil et Procédés. France: Université de Toulouse, Toulouse.
  • Jerzak, W., and M. Kuźnia. 2016. ‘Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off’. Journal of Natural Gas Science and Engineering 29:46–54. doi:10.1016/j.jngse.2015.12.054.
  • Kahraman, N., S. Tangöz, and S. O. Akansu. 2018. ‘Numerical analysis of a gas turbine combustor fueled by hydrogen in comparison with jet-a fuel’. Fuel 217:66–77. doi:10.1016/j.fuel.2017.12.071.
  • Kalt, P. A. M., Y. M. Al-Abdeli, A. R. Masri, and R. S. Barlow. 2002. ‘Swirling turbulent non-premixed flames of methane: Flow field and compositional structure’. Proceedings of the Combustion Institute 29 (2):1913–19. doi:10.1016/S1540-7489(02)80232-2.
  • Khaleghi, M., S. E. Hosseini, and M. A. Wahid. 2015. ‘Experimental and numerical investigations of biogas vortex combustion’. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 229 (6):662–76.
  • Krieger, G. C., A. P. V. Campos, M. D. B. Takehara, F. A. da Cunha, and C. A. G. Veras. 2015. ‘Numerical simulation of oxy-fuel combustion for gas turbine applications’. Appl. Therm. Eng. 78:471–81. doi:10.1016/j.applthermaleng.2015.01.001.
  • Kuznetsov, N. V., ed. 1973. Thermal Design for Power Boilers (a Standard Method). Énergiya: Moscow.
  • Lam, C. K. G., and K. Bremhorst. 1981. ‘A modified form of the k-ε model for predicting wall turbulence’. J Fluids Eng 103 (3):456–60. doi:10.1115/1.3240815.
  • Launder, B. E., and D. B. Spalding. 1974. ‘The numerical computation of turbulent flows’. Comput. Methods Appl. Mech. Eng. 3 (2):269–89. doi:10.1016/0045-7825(74)90029-2.
  • Lefebvre, A. H., and D. R. Ballal. 2010. Gas Turbine Combustion: Alternative Fuels and Emissions. 3rd edn ed. Boca Raton, FL: CRC Press- Taylor & Francis Group.
  • Lellek, S., C. Barfuß, and T. Sattelmayer. 2017. ‘Experimental study of the interaction of water sprays with swirling premixed natural gas flames’. Journal of Engineering for Gas Turbines and Power 139 (2):021506. doi:10.1115/1.4034238.
  • Leung, T., and I. Wierzba (2007), Stability limits of biogas jet diffusion flames, Vol. Volume 6: Energy Systems: Analysis, Thermodynamics and Sustainability of ASME International Mechanical Engineering Congress and Exposition, pp. 65–73
  • Leung, T., and I. Wierzba. 2008. ‘The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream’. Int. J. Hydrogen Energy 33 (14):3856–62. doi:10.1016/j.ijhydene.2008.04.030.
  • Li, L., Y. Lin, Z. Fu, and C. Zhang. 2016. ‘Emission characteristics of a model combustor for aero gas turbine application’. Experimental Thermal and Fluid Science 72:235–48. doi:10.1016/j.expthermflusci.2015.11.012.
  • Liguori, V. 2016. ‘Numerical investigation: Performances of a standard biogas in a 100 kWe MGT’. Energy Reports 2:99–106. doi:10.1016/j.egyr.2016.03.005.
  • Makhanlall, D., J. L. Munda, and P. Jiang. 2013. ‘Radiation energy devaluation in diffusion combusting flows of natural gas’. Energy 61:657–63. doi:10.1016/j.energy.2013.09.026.
  • Masri, A. R. (2007), ‘Sydney swirl flows and flames database’, http://web.aeromech.usyd.edu.au/thermofluids/swirl.php (Accessed: 29 May 2019)
  • Masri, A. R. 2020. ‘Challenges for turbulent combustion (In Press)’. Proceedings of the Combustion Institute. doi:10.1016/j.proci.2020.07.144.
  • Mattingly, J. D., W. H. Heiser, and D. T. Pratt. 2002. Aircraft engine design AIAA Education Series. 2nd edn ed. American Institute of Aeronautics and Astronautics: Inc., Reston, VA.
  • Melconian, J. O., and A. T. Modak (1985), Combustor design, in J. W. Sawyer, edited by ‘Sawyer’s Gas Turbine Engineering Handbook: Theory and Design’, Vol. 1, Turbomachinery International Publications, Connecticut, chapter 5, pp. 1–62
  • Mordaunt, C. J., and W. C. Pierce. 2014. ‘Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion’. Fuel 124:258–68. doi:10.1016/j.fuel.2014.01.097.
  • Motsamai, O. S., J. A. Snyman, and J. P. Meyer. 2010. ‘Optimization of gas turbine combustor mixing for improved exit temperature profile’. Heat Transfer Engineering 31 (5):402–18. doi:10.1080/01457630903375319.
  • Murphy, C. M. 2004. Design and construction of a gas turbine combustor test rig for alternative fuel testing: Master’s thesis, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada.
  • Oates, G. C., ed. 1989. ‘Turbipropulsion Combustion Technology’, In Aircraft Propulsion Systems Technology and Design, 116. Washington, DC: AIAA Education Series: American Institute of Aeronautics and Astronautics, Inc.
  • Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow, Computational Methods in Mechanics and Thermal Sciences. 1st edn ed. Hemisphere Publishing Corporation: Washington.
  • Peters, N. 2004. Turbulent Combustion. Cambridge Monographs on Mechanics: Cambridge University Press.
  • Pitsch, H., and N. Peters. 1998. ‘A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects’. Combustion and Flame 114 (1):26–40. doi:10.1016/S0010-2180(97)00278-2.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and Numerical Combustion. 2nd edn ed. Inc., Philadelphia, PA: R. T. Edwards.
  • Rajabi, V., and E. Amani. 2018. ‘A computational study of swirl number effects on entropy generation in gas turbine combustors’. Heat Transfer Engineering 40 (3):346–61. doi:10.1080/01457632.2018.1429056.
  • Rashwan, S. S., M. A. Habib, R. Ben-Mansour, M. A. Nemitallah, and A. Abdelhafez. 2018. ‘The effect of swirl number and oxidizer composition on combustion characteristics of non-premixed methane flames’. Energy & Fuels 32 (4):5664–5664. doi:10.1021/acs.energyfuels.8b01218.
  • Razak, A. M. Y. 2007. Industrial gas turbines: Performance and operability. In Woodhead Publishing Limited. England: Cambridge.
  • Rohani, B., and K. M. Saqr. 2012. ‘Effects of hydrogen addition on the structure and pollutant emissions of a turbulent unconfined swirling flame’. International Communications in Heat and Mass Transfer 39 (5):681–88. doi:10.1016/j.icheatmasstransfer.2012.03.020.
  • Saediamiri, M., M. Birouk, and J. A. Kozinski. 2016. ‘Enhancing the stability limits of biogas non-premixed flame’. Combustion Science and Technology 188 (11):2077–104. doi:10.1080/00102202.2016.1211915.
  • Safer, K., A. Ouadha, and F. Tabet. 2017. ‘Entropy generation in turbulent syngas counter-flow diffusion flames’. Int. J. Hydrogen Energy 42 (49):29532–44. doi:10.1016/j.ijhydene.2017.08.217.
  • Sahebjamei, M., E. Amani, and M. R. H. Nobari. 2019. ‘Numerical analysis of radial and angular stratification in turbulent swirling flames’. Energy 173:523–39. doi:10.1016/j.energy.2019.02.112.
  • Şahin, M. 2019. ‘Combustion characteristics of various biogas flames under reduced oxygen concentration conditions’. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (19):2415–27. doi:10.1080/15567036.2019.1601796.
  • Şahin, M., and M. İlbaş. 2019. ‘Analysis of the effect of H2O content on combustion behaviours of a biogas fuel’. Int. J. Hydrogen Energy 45 (5):3651–59. doi:10.1016/j.ijhydene.2019.02.042.
  • Santhosh, R., and S. Basu. 2016. ‘Transitions and blowoff of unconfined non-premixed swirling flame’. Fuel 164:135–52.
  • Sayre, A., N. Lallemant, J. Dugue, and R. Weber. 1994. Scaling characteristics of the aerodynamics and low NOx properties of industrial natural gas burners scaling 400 study. part 4. 300 kw berl test results. Ijmuiden, Netherlands: Topical report, International Flame Research Foundation.
  • Shahpouri, S., and E. Houshfar. 2019. ‘Nitrogen oxides reduction and performance enhancement of combustor with direct water injection and humidification of inlet air’. Clean Technologies and Environmental Policy 21 (3):667–83. doi:10.1007/s10098-019-01666-4.
  • Shanbhogue, S. J., Y. S. Sanusi, S. Taamallah, M. A. Habib, E. M. A. Mokheimer, and A. F. Ghoniem. 2016. ‘Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4H2 combustion’. Combustion and Flame 163:494–507. doi:10.1016/j.combustflame.2015.10.026.
  • Sivathanu, Y. R., and G. M. Faeth. 1990. ‘Generalized state relationships for scalar properties in nonpremixed hydrocarbon/air flames’. Combustion and Flame 82 (2):211–30. doi:10.1016/0010-2180(90)90099-D.
  • Taamallah, S., S. J. Shanbhogue, and A. F. Ghoniem. 2016. ‘Turbulent flame stabilization modes in premixed swirl combustion: Physical mechanism and karlovitz number-based criterion’. Combustion and Flame 166:19–33. doi:10.1016/j.combustflame.2015.12.007.
  • Torkzadeh, M. M., F. Bolourchifard, and E. Amani. 2016. ‘An investigation of air-swirl design criteria for gas turbine combustors through a multi-objective CFD optimization’. Fuel 186:734–49. doi:10.1016/j.fuel.2016.09.022.
  • Wankhede, M. J., N. W. Bressloff, and A. J. Keane. 2011. ‘Combustor design optimization using co-kriging of steady and unsteady turbulent combustion’. Journal of Engineering for Gas Turbines and Power 133 (12):121504. doi:10.1115/1.4004155.
  • Yang, X., Z. He, P. Qiu, S. Dong, and H. Tan. 2019. ‘Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor’. Energy 170:1082–97. doi:10.1016/j.energy.2018.12.189.
  • Yılmaz, İ. 2013. ‘Effect of swirl number on combustion characteristics in a natural gas diffusion flame’. Journal of Energy Resources Technology 135 (4):042204. doi:10.1115/1.4024222.
  • Zhang, Z., X. Liu, Y. Gong, Z. Li, J. Yang, and H. Zheng. 2020. ‘Investigation on flame characteristics of industrial gas turbine combustor with different mixing uniformities’. Fuel 259:116297. doi:10.1016/j.fuel.2019.116297.
  • Zhen, H. S., C. W. Leung, and C. S. Cheung. 2013. ‘Effects of hydrogen addition on the characteristics of a biogas diffusion flame’. Int. J. Hydrogen Energy 38 (16):6874–81. doi:10.1016/j.ijhydene.2013.02.046.
  • Zhen, H. S., C. W. Leung, and C. S. Cheung. 2014. ‘A comparison of the heat transfer behaviors of biogas-H2 diffusion and premixed flames’. Int. J. Hydrogen Energy 39 (2):1137–44. doi:10.1016/j.ijhydene.2013.10.100.
  • Zhen, H. S., C. W. Leung, C. S. Cheung, and Z. H. Huang. 2014. ‘Characterization of biogas-hydrogen premixed flames using bunsen burner’. Int. J. Hydrogen Energy 39 (25):13292–99. doi:10.1016/j.ijhydene.2014.06.126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.