198
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Prediction of Flame Length in Opposed-Flow Flame Spread: Global Similarity Analysis and Experiments

& ORCID Icon
Pages 2659-2673 | Received 27 Jul 2020, Accepted 31 Jan 2021, Published online: 28 Feb 2021

References

  • Altenkirch, R., and M. Vedha-Nayagam. 1988. Opposed-flow flame spread and extinction in mixed-convection boundary layers. Symp. (Int.) Combust. 22:1495–500. doi:10.1016/S0082-0784(89)80159-6.
  • Annamalai, K., and M. Sibulkin. 1979, April. Flame spread over combustible surfaces for laminar flow systems part II: Flame heights and fire spread rates. Combust. Sci. Technol. 19 (5 & 6):185–93. doi:10.1080/00102207908946879.
  • Astra Products. Accessed June, 2017. https://astraproducts.com/
  • Bhattacharjee, S., M. Bundy, G. Patel, C. Paolini, and W. Tran. 2013. A novel apparatus for flame spread study. Proc. Combust. Inst. 34 (2):2513–21. doi:10.1016/j.proci.2012.05.076.
  • Bhattacharjee, S., L. Carmignani, G. Celniker, and B. Rhoades. 2017. Measurement of instantaneous flame spread rate over solid fuels using image analysis. Fire Saf. J 91:123–29. doi:10.1016/j.firesaf.2017.03.039.
  • Bhattacharjee, S., R. Nagarkar, and Y. Nakamura. 2014. A correlation for an effective flow velocity for capturing the boundary layer effect in opposed-flow flame spread over thin fuels. Combust. Sci. Technol. 186 (8):975–87. doi:10.1080/00102202.2014.900056.
  • Bhattacharjee, S., S. Takahashi, K. Wakai, and C. P. Paolini. 2011. Correlating flame geometry in opposed flow flame spread over thin fuels. Proc. Combust. Inst. 33:2465–72. doi:10.1016/j.proci.2010.06.053.
  • Burke, S., and T. Schumann. 1928. Diffusion Flames. Ind. Eng. Chem. 20:998–1004. doi:10.1021/ie50226a005.
  • Carmignani, L., G. Celniker, and S. Bhattacharjee. 2017. The effect of boundary layer on blow-off extinction in opposed-flow flame spread over thin cellulose: Experiments and a simplified analysis. Fire Technol. 53 (3):967–82. doi:10.1007/s10694-016-0613-3.
  • Carmignani, L., O. Kaskir, E. Tagger, and S. Bhattacharjee (2019). Connecting burning rate and flame spread rate in opposed-flow flame spread over flat fuel beds. 11th U.S. National Combustion Meeting. Pasadena, CA.
  • de Ris, J. 1969. Spread of a laminar diffusion flame. Symp. (Int.) Combust. 12 (1):241–52. doi:10.1016/S0082-0784(69)80407-8.
  • Delichatsios, M. 1984. Flame heights in turbulent wall fires with significant flame radiation. Combust. Sci. Technol. 39 (1):195–214. doi:10.1080/00102208408923789.
  • Dexter Research. dexterresearch.com. Accessed April 2015 http://www.dexterresearch.com/
  • Fernandez-Pello, A. 1978. A theoretical model for the upward laminar spread of flames over vertical fuel surfaces. Combust. Flame 31:135–48. doi:10.1016/0010-2180(78)90124-4.
  • Fernandez-Pello, A. 1991. Pool and wall fires: Some fundamental aspects. Proc. ASME/JSME Thermal Eng. Conf., ASME Book 10309E 261–68.
  • Fernandez-Pello, A., S. Ray, and I. Glassman. 1981. Flame spread in an opposed forced flow: The effect of ambient oxygen concentration. Symp. (Int.) Combust. 18:579–89. doi:10.1016/S0082-0784(81)80063-X.
  • Fernandez-Pello, A., and R. Santoro. 1979. On the dominant mode of heat transfer in downward flame spread. Symp. (Int.) Combust. 17:1201–09. doi:10.1016/S0082-0784(79)80114-9.
  • Huang, X., and J. Gao. 2020. A review of near-limit opposed fire spread. Fire Saf. J. In Press: 103141. doi:10.1016/j.firesaf.2020.103141.
  • Lange, G., L. Carmignani, and S. Bhattacharjee. 2019. Thermal radiation measurements of downward spreading flames. Appl. Th. Engin. 160. In Press. doi:10.1016/j.applthermaleng.2019.114022.
  • Markstein, G. H., and J. de Ris. 1990. Wall-fire radiant emission. Part 1: Slot-burner flames, comparison with jet flames. Proc. Combust. Inst. 23:1685–92. doi:10.1016/S0082-0784(06)80443-1.
  • Mitsubishi Rayon Co.,Ltd. n.d. Accessed January 2015. http://www.mrc.co.jp/acryplen/english/index.html
  • Orloff, L., J. de Ris, and G. H. Markstein. 1975. Upward turbulent fire spread and burning of fuel surface. Symp. (Int.) Combust. 15:183–92. doi:10.1016/S0082-0784(75)80296-7.
  • Pagni, P., and T. Shih. 1977. Excess pyrolyzate. Symp. (Int.) Combust. 16:1329–43. doi:10.1016/S0082-0784(77)80419-0.
  • Roper, F. 1977. The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model. Combust. Flame 29:219–26. doi:10.1016/0010-2180(77)90112-2.
  • Roper, F., C. Smith, and A. Cunningham. 1977. The prediction of laminar jet diffusion flame sizes: Part II. Experimental verification. Combust. Flame 29:227–34. doi:10.1016/0010-2180(77)90113-4.
  • VCF Films Incorporated. n.d. Accessed January 2015. http://www.vcffilms.com/home
  • Wichman, I. 1992. Theory of opposed-flow flame spread. Prog. Energy Combust. Sci. 18:553–93. doi:10.1016/0360-1285(92)90039-4.
  • Wichman, I., F. Williams, and I. Glassman. 1982. Theoretical aspects of flame spread in an opposed flow over flat surfaces of solid fuels. Symp. (Int.) Combust. 19 (1):835–45. doi:10.1016/S0082-0784(82)80259-2.
  • Williams, F. 1971. Theory of combustion in laminar flows. Annu. Rev. Fluid Mech. 3:171–88. doi:10.1146/annurev.fl.03.010171.001131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.