398
Views
5
CrossRef citations to date
0
Altmetric
Research Article

An Experimental Study on Kerosene Spray Combustion Under Conventional and Hot-Diluted Conditions

, &
Pages 2712-2751 | Received 10 Aug 2020, Accepted 03 Feb 2021, Published online: 25 Feb 2021

References

  • Bennett, B. A. V., et al. (2000). “Computational and experimental study of axisymmetric coflow partially premixed methane/air flames.” Combustion and Flame 123(4): 522–546.
  • Bennett, B. A. V., Z. Cheng, R. W. Pitz, M. D. Smooke, et al. 2008. Computational and experimental study of oxygen-enhanced axisymmetric laminar methane flames. Combust. Theory Modelling 12(3):497–527. doi:10.1080/13647830701843296.
  • Bradley, D., and K. J. Matthews. 1968. Measurement of high gas temperatures with fine wire thermocouples. Journal of Mechanical Engineering Science 10 (4):299–305. doi:10.1243/JMES_JOUR_1968_010_048_02.
  • Cao, S., B. Ma, B. A. V. Bennett, D. Giassi, D. P. Stocker, F. Takahashi, M. B. Long, M. D. Smooke, et al. 2015. A computational and experimental study of coflow laminar methane/air diffusion flames: Effects of fuel dilution, inlet velocity, and gravity. Proceedings of the Combustion Institute 35(1):897–903. doi:10.1016/j.proci.2014.05.138.
  • Cavaliere, A., and M. De Joannon. 2004. Mild combustion. Progress in Energy and Combustion Science 30 (4):329–66. doi:10.1016/j.pecs.2004.02.003.
  • Cessou, A., and D. Stepowski. 1996. Planar laser induced fluorescence measurement of [OH] in the stabilization stage of a spray jet flame. Combustion Science and Technology 118 (4–6):361–81. doi:10.1080/00102209608951986.
  • Christo, F.C. and B.B. Dally. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combustion and Flame. 142(1): 117–129.
  • Cléon, G., D. Honoré, C. Lacour, A. Cessou, et al. 2015. Experimental investigation of structure and stabilization of spray oxyfuel flames diluted by carbon dioxide. Proceedings of the Combustion Institute 35(3):3565–72. doi:10.1016/j.proci.2014.06.028.
  • Correia Rodrigues, H., M. J. Tummers, E. H. Van Veen, D. J. E. M. Roekaerts, et al. 2015a. Effects of coflow temperature and composition on ethanol spray flames in hot-diluted coflow. International Journal of Heat and Fluid Flow 51:309–323. doi:10.1016/j.ijheatfluidflow.2014.10.006.
  • Correia Rodrigues, H., M. J. Tummers, E. H. Van Veen, D. J. E. M. Roekaerts, et al. 2015b. Spray flame structure in conventional and hot-diluted combustion regime. Combustion and Flame 162(3):759–773. doi:10.1016/j.combustflame.2014.07.033.
  • Dally, B.B., A.N. Karpetis, and R.S. Barlow. 2002. Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proceedings of the Combustion Institute 29(1): 1147–1154.
  • De Joannon, M., A. Saponaro, A. Cavaliere, et al. 2000. Zero-dimensional analysis of diluted oxidation of methane in rich conditions. Proceedings of the Combustion Institute 28(2):1639–46. doi:10.1016/S0082-0784(00)80562-7.
  • Düwel, I., H.-W. Ge, H. Kronemayer, R. Dibble, E. Gutheil, C. Schulz, J. Wolfrum, et al. 2007. Experimental and numerical characterization of a turbulent spray flame. Proceedings of the Combustion Institute 31(2):2247–55. doi:10.1016/j.proci.2006.07.111.
  • Gandomkar A., Schihl J., and Allison P. M.2020 “Applicability of Flame Chemiluminescence from Liquid, Heavy-Hydrocarbon Fuels”, AIAA Scitech 2020 Forum. AIAA 2020-0523. https://doi.org/10.2514/6.2020-0523
  • Ge, H. W., I. Düwel, H. Kronemayer, R. W. Dibble, E. Gutheil, C. Schulz, J. Wolfrum, et al. 2008. Laser-based experimental and monte carlo PDF numerical investigation of an ethanol/air spray flame. Combustion Science and Technology 180(8):1529–47. doi:10.1080/00102200802125693.
  • Gordon, R. L., A. R. Masri, E. Mastorakos, et al. 2008. Simultaneous rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combustion and Flame 155(1):181–95. doi:10.1016/j.combustflame.2008.07.001.
  • Hanson, R. K. 2018. Quantitative laser diagnostics for combustion chemistry and propulsion. In Princeton Combustion Summer School Lecture Notes. S. University. Princeton University. New Jersey, US: Princeton University. https://cefrc.princeton.edu/combustion-summer-school/archived-programs/2018-session/lecture-notes
  • Hosseini, S. 2018. Flame spectrum analysis by image processing. In Aerospace Engineering. I.R, Bachelor of Science, 28. Iran, Tehan: Sharif University of Technology, Sharif University of Technology.
  • Jenny P., Roekaerts D., and Beishuizen N.2012 “Modeling of turbulent dilute spray combustion”, Progress in Energy and Combustion Science. https://doi.org/10.1016/j.pecs.2012.07.001
  • Jeong, Y. K., C. H. Jeon, Y. J. Chang, et al. 2006. Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH4-air flames. Experimental Thermal and Fluid Science 30(7):663–73. doi:10.1016/j.expthermflusci.2006.01.005.
  • Karnani, S., and D. Dunn-Rankin. 2013. Visualizing CH* chemiluminescence in sooting flames. Combustion and Flame 160 (10):2275–78. doi:10.1016/j.combustflame.2013.05.002.
  • Karpetis, A. N., and A. Gomez. 1998. An experimental investigation of non-premixed turbulent spray flames and their self-similar behavior. Symposium (International) on Combustion 27 (2):2001–08. doi:10.1016/S0082-0784(98)80045-3.
  • Karpetis, A. N., and A. Gomez. 2000. An experimental study of well-defined turbulent nonpremixed spray flames. Combustion and Flame 121 (1):1–23. doi:10.1016/S0010-2180(99)00115-7.
  • Kishore, V. R., S. Minaev, M. Akram, S. Kumar, et al. 2017. Dynamics of premixed methane/air mixtures in a heated microchannel with different wall temperature gradients. RSC Adv 7(4):2066–73. doi:10.1039/C6RA27582F.
  • Kuo, K. K., and R. A. 2012. Fundamentals of turbulent and multiphase combustion. John Wiley & Sons Inc: United States of America.
  • Li, P., J. Mi, B. B. Dally, F. Wang, L. Wang, Z. Liu, S. Chen, C. Zheng, et al. 2011. Progress and recent trend in MILD combustion. Science China Technological Sciences 54(2):255–69. doi:10.1007/s11431-010-4257-0.
  • Ma, L., and D. Roekaerts. 2016. Structure of spray in hot-diluted coflow flames under different coflow conditions: A numerical study. Combustion and Flame 172:20–37. doi:10.1016/j.combustflame.2016.06.017.
  • Ma, L., and D. Roekaerts. 2017. Numerical study of the multi-flame structure in spray combustion. Proceedings of the Combustion Institute 36 (2):2603–13. doi:10.1016/j.proci.2016.06.015.
  • Mardani, A., and A. Fazlollahi Ghomshi. 2016. Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4–H2 fuel. Energy 99:136–51. doi:10.1016/j.energy.2016.01.016.
  • Mardani, A., and S. Tabejamaat. 2010. Effect of hydrogen on hydrogen–methane turbulent non-premixed flame under MILD condition. Int. J. Hydrogen Energy 35 (20):11324–31. doi:10.1016/j.ijhydene.2010.06.064.
  • Mardani, A., and S. Tabejamaat. 2012. NOx formation in H2-CH4 blended flame under MILD conditions. Combustion Science and Technology 184 (7–8):995–1010. doi:10.1080/00102202.2012.663991.
  • Mardani, A., and S. Tabejamaat. 2015. Numerical study of flame structure in the mild combustion regime. Thermal Science 19 (1):14. doi:10.2298/TSCI120522091M.
  • Mardani, A., S. Tabejamaat, M. Ghamari, et al. 2010. Numerical study of influence of molecular diffusion in the mild combustion regime. Combust. Theory Modelling 14(5):747–74. doi:10.1080/13647830.2010.512959.
  • Mardani, A., S. Tabejamaat, M. B. Mohammadi, et al. 2011. Numerical study of the effect of turbulence on rate of reactions in the MILD combustion regime. Combust. Theory Modelling 15(6):753–72. doi:10.1080/13647830.2011.561368.
  • Mardani, A., S. Tabejamaat, S. Hassanpour, et al. 2013. Numerical study of CO and CO2 formation in CH4/H2 blended flame under MILD condition. Combustion and Flame 160(9):1636–49. doi:10.1016/j.combustflame.2013.04.003.
  • Marley, S. K., E. J. Welle, K. M. Lyons, W. L. Roberts, et al. 2004. Effects of leading edge entrainment on the double flame structure in lifted ethanol spray flames. Experimental Thermal and Fluid Science 29(1):23–31. doi:10.1016/j.expthermflusci.2004.01.009.
  • Marley, S. K., K. M. Lyons, K. A. Watson, et al. 2004. Leading-edge reaction zones in lifted-jet gas and spray flames. Flow, Turbulence and Combustion 72(1):29–47. doi:10.1023/B:APPL.0000014906.91990.4e.
  • Martins, C. A., Pimenta, A. P., Carvalho Jr., J. A., Ferreira, M. A., & Caldeira-Pires, A. A. (2005). CH and C2 radicals characterization in natural gas turbulent diffusion flames. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27(2), 110–118. https://doi.org/10.1590/S1678-58782005000200003
  • Masri, A. R., and J. D. Gounder. 2010. Turbulent spray flames of acetone and ethanol approaching extinction. Combustion Science and Technology 182 (4–6):702–15. doi:10.1080/00102200903467754.
  • Masri, A. R., and J. D. Gounder. 2011. Details and complexities of boundary conditions in turbulent piloted dilute spray jets and flames, dordrecht. Netherlands: Springer.
  • McDonell, V. G., and G. S. Samuelsen. 1995. An experimental data base for the computational fluid dynamics of reacting and nonreacting methanol sprays. J Fluids Eng 117 (1):145–53. doi:10.1115/1.2816804.
  • Medwell, P. R., and B. B. Dally. 2012. Effect of fuel composition on jet flames in a heated and diluted oxidant stream. Combustion and Flame 159 (10):3138–45. doi:10.1016/j.combustflame.2012.04.012.
  • Merryman, E. L., and A. Levy. 1975. Nitrogen oxide formation in flames: The roles of NO2 and fuel nitrogen. Symposium (International) on Combustion 15 (1):1073–83. doi:10.1016/S0082-0784(75)80372-9.
  • Mohammed, R. K., M. A. Tanoff, M. D. Smooke, A. M. Schaffer, M. B. Long, et al. 1998. Computational and experimental study of a forced, timevarying, axisymmetric, laminar diffusion flame. Symposium (International) on Combustion 27(1):693–702. doi:10.1016/S0082-0784(98)80462-1.
  • Mohapatra, S., P. Nehe, S. K. Dash, M. R. Vanteru, et al. 2020. Numerical analysis of lifted spray flames in various coflow conditions. Combustion Science and Technology 192(4):680–700. doi:10.1080/00102202.2019.1590824.
  • “N.I.O.P.D.C. Products - kerosene.” Retrieved August, 2019, from https://www.niopdc.ir/fa/products/oilproducts/woil-%D9%86%D9%81%D8%AA-%D8%B3%D9%81%DB%8C%D8%AF.
  • Najm, H. N., P. H. Paul, C. J. Mueller, P. S. Wyckoff, et al. 1998. On the adequacy of certain experimental observables as measurements of flame burning rate. Combustion and Flame 113(3):312–32. doi:10.1016/S0010-2180(97)00209-5.
  • Noor, M. M., A. P. W., and T. F. Yusaf (2012a). Mild combustion: A technical review towards open furnace combustion. 2nd Malaysian Postgraduate Conference Bond University, Gold Coast, Queensland, Australia.
  • Noor, M. M., A. P. W., and T. F. Yusaf. 2012b. A review of mild combustion and open furnace design consideration. International Journal of Automotive and Mechanical Engineering 6 (1):730–54. doi:10.15282/ijame.6.2012.6.0060.
  • Occupational Exposures in Petroleum Refining; Crude Oil and Major Petroleum Fuels. 1989. IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 45, 203–13. Lyon, France: World Health Organization.
  • Oliver, J. G. J., and J. A. H. W. P. 2018. Trends in global CO2 and total greenhouse gas emissions, 53. Netherlands: PBL Netherlands Environmental Assessment Agency.
  • Panoutsos, C. S., Y. HARDALUPAS, A. TAYLOR, et al. 2009. Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane–air flames. Combustion and Flame 156(2):273–91. doi:10.1016/j.combustflame.2008.11.008.
  • Paul, P. H., and H. N. Najm. 1998. Planar laser-induced fluorescence imaging of flame heat release rate. Symposium (International) on Combustion 27 (1):43–50. doi:10.1016/S0082-0784(98)80388-3.
  • Pichard, C., Y. Michou, C. Chauveau, L. Gökalp, et al. 2002. Average droplet vaporization rates in partially prevaporized turbulent spray flames. Proceedings of the Combustion Institute 29(1):527–33. doi:10.1016/S1540-7489(02)80068-2.
  • Potdar, U., A. Jamgade, P. Mahyavanshi, Y. Yoon, S. Kumar, et al. 2017. Experimental investigations on stabilization mechanism of lifted kerosene spray flames. Combustion Science and Technology 189(7):1241–59. doi:10.1080/00102202.2017.1280482.
  • Potdar, U., O. Pawar, R. Sikka, S. Kumar, et al. 2018. Experimental investigations on the stabilization of lifted kerosene spray flames with coflow air. Combustion Science and Technology 190(10):1689–709. doi:10.1080/00102202.2018.1461851.
  • Ranzi, E., A. FRASSOLDATI, A. STAGNI, M. PELUCCHI, A. CUOCI, T. FARAVELLI, et al. 2014. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. International Journal of Chemical Kinetics 46(9):512–42. doi:10.1002/kin.20867.
  • Reddy, V. M., D. Trivedi, S. Kumar, et al. 2012. Experimental investigations on lifted spray flames for a range of coflow conditions. Combustion Science and Technology 184(1):44–63. doi:10.1080/00102202.2011.615770.
  • Sewon Kim, C. L., and M. Kwon. 2015. Measurement of equivalence ratio using optical flame chemiluminescence sensor of turbulent diffusion flame. International Journal of Electrical Energy 3 (3):203–08.
  • Shafiee, S., and E. Topal. 2009. When will fossil fuel reserves be diminished? Energy Policy 37 (1):181–89. doi:10.1016/j.enpol.2008.08.016.
  • Sharma, S., A. Chowdhury, S. Kumar, et al. 2020. Effect of CO2/N2 dilution on characteristics of liquid fuel combustion in flameless combustion mode. Combustion Science and Technology 1–24. doi:10.1080/00102202.2020.1780582.
  • Sharma, S., H. Pingulkar, A. Chowdhury, S. Kumar, et al. 2018. A new emission reduction approach in MILD combustion through asymmetric fuel injection. Combustion and Flame 193:61–75. doi:10.1016/j.combustflame.2018.03.008.
  • Sharma, S., R. Kumar, A. Chowdhury, Y. Yoon, S. Kumar, et al. 2017. On the effect of spray parameters on CO and NOx emissions in a liquid fuel fired flameless combustor. Fuel 199:229–38. doi:10.1016/j.fuel.2017.02.102.
  • Sjöholm, J., J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, M. Aldén, et al. 2013. Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proceedings of the Combustion Institute 34(1):1475–82. doi:10.1016/j.proci.2012.05.037.
  • Sommerfeld, M., and H. H. Qiu. 1998. Experimental studies of spray evaporation in turbulent flow. International Journal of Heat and Fluid Flow 19 (1):10–22. doi:10.1016/S0142-727X(97)10002-9.
  • Sorrentino, G., P. Sabia, M. De Joannon, A. Cavaliere, R. Ragucci, et al. 2016. The effect of diluent on the sustainability of MILD combustion in a cyclonic burner. Flow, Turbulence and Combustion 96(2):449–68. doi:10.1007/s10494-015-9668-3.
  • Sorrentino, G., P. Sabia, M. De Joannon, P. Bozza, R. Ragucci, et al. 2018. Influence of preheating and thermal power on cyclonic burner characteristics under mild combustion. Fuel 233:207–14. doi:10.1016/j.fuel.2018.06.049.
  • Sorrentino, G., P. Sabia, M. De Joannon, R. Ragucci, A. Cavaliere, U. Göktolga, J. Van Oijen, P. De Goey, et al. 2015. Development of a novel cyclonic flow combustion chamber for achieving MILD/flameless combustion. Energy Procedia 66:141–44. doi:10.1016/j.egypro.2015.02.079.
  • Sorrentino, G., P. Sabia, P. Bozza, R. Ragucci, M. De Joannon, et al. 2017b. Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions. Energy 137:1167–74. doi:10.1016/j.energy.2017.05.135.
  • Sorrentino, G., U. Göktolga, M. De Joannon, J. Van Oijen, A. Cavaliere, P. De Goey, et al. 2017a. An experimental and numerical study of MILD combustion in a cyclonic burner. Energy Procedia 120:649–56. doi:10.1016/j.egypro.2017.07.173.
  • Tao, Y., R. Xu, K. Wang, J. Shao, S. E. Johnson, A. Movaghar, X. Han, J.-W. Park, T. Lu, K. Brezinsky, et al. 2018. A physics-based approach to modeling real-fuel combustion chemistry – III. reaction kinetic model of JP10. Combustion and Flame 198:466–76. doi:10.1016/j.combustflame.2018.08.022.
  • Turns, S. R. 2012. An introduction to combustion: Concepts and applications. third edition, New York, NY: McGraw-Hill Co. London], : [ McGraw-Hill Higher Education]; [ McGraw-Hill [distributor].
  • Walsh, K. T., M. B. Long, M. A. Tanoff, M. D. Smooke, et al. 1998. Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame. Symposium (International) on Combustion 27(1):615–23. doi:10.1016/S0082-0784(98)80453-0.
  • Weber, R., J. P. Smart, W. V. Kamp, et al. 2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proceedings of the Combustion Institute 30(2):2623–29. doi:10.1016/j.proci.2004.08.101.
  • Widmann, J. F., and C. Presser. 2002. A benchmark experimental database for multiphase combustion model input and validation. Combustion and Flame 129 (1):47–86. doi:10.1016/S0010-2180(01)00374-1.
  • Widmann, J. F., and C. Presser. 2002b. Erratum to “a benchmark experimental database for multiphase combustion model input and validation”: [Combustion and flame 129:47–86 (2002)]*. Combustion and Flame 130 (4):386–90. doi:10.1016/S0010-2180(02)00450-9.
  • World Energy Recources. 2016. Vol. 1028, London, United Kingdom: World Energy Council.
  • Ye, J., P. R. Medwell, B. B. Dally, M. J. Evans, et al. 2016. The transition of ethanol flames from conventional to MILD combustion. Combustion and Flame 171:173–84. doi:10.1016/j.combustflame.2016.05.020.
  • Ye, J., P. R. Medwell, E. Varea, S. Kruse, B. B. Dally, H. G. Pitsch, et al. 2015. An experimental study on MILD combustion of prevaporised liquid fuels. Appl. Energy 151:93–101. doi:10.1016/j.apenergy.2015.04.019.
  • Ye, J., P. R. Medwell, K. Kleinheinz, M. J. Evans, B. B. Dally, H. G. Pitsch, et al. 2018. Structural differences of ethanol and DME jet flames in a hot diluted coflow. Combustion and Flame 192:473–94. doi:10.1016/j.combustflame.2018.02.025.
  • Yusaf, T. F., M. M. N., and A. P. Wandel (2013). MILD combustion: The future for lean and clean combustion technology. International Conference on Mechanical Engineering Research, Bukit Gambang Resort City, Kuantan, Pahang, Malaysia.
  • Zettervall, N., C. Fureby, E. J. K. Nilsson, et al. 2020. A reduced chemical kinetic reaction mechanism for kerosene-air combustion. Fuel 269:117446. doi:10.1016/j.fuel.2020.117446.
  • Zhen, H. S., C. W. Leung, C. S. Cheung, et al. 2014. A comparison of the heat transfer behaviors of biogas–H2 diffusion and premixed flames. Int. J. Hydrogen Energy 39(2):1137–44. doi:10.1016/j.ijhydene.2013.10.100.
  • Zhou, B., C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, X.-S. Bai, et al. 2017. Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: Scalar distributions and correlations. Combustion and Flame 175:220–36. doi:10.1016/j.combustflame.2016.06.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.