308
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of Plasma on the Deflagration to Detonation Transition

& ORCID Icon
Pages 2752-2770 | Received 16 Aug 2020, Accepted 05 Feb 2021, Published online: 25 Feb 2021

References

  • Akkerman, V., V. Bychkov, A. Petchenko, and L. E. Eriksson. 2006. Accelerating flames in cylindrical tubes with nonslip at the walls. Combust. Flame 145:206–19. doi:10.1016/j.combustflame.2005.10.011.
  • Brailovsky, I., and G. I. Sivashinsky. 1998. Momentum loss as a mechanism for deflagration-to-detonation transition. Combust. Theory Model 2:429–47. doi:10.1088/1364-7830/2/4/006.
  • Cathey, C., F. Wang, T. Tang, A. Kuthi, M. A. Gundersen, J. O. Sinibaldi, C. Broph, F. Barbour, R. K. Hanson, J. Hoke, et al., 2007. Transient plasma ignition for delay reduction in pulse detonation engines, 45th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2007-443, Reno, NV. https://doi.org/10.2514/6.2007-443
  • Cherif, M. A., S. A. Shcherbanev, P. Vidal, A. Claverie, and S. M. Starikovskaia, Influence of moderate pressure nanosecond discharge on the structure of the detonation wave, AIAA Scitech Forum (2020), AIAA paper 2020-189, Orlando, Florida. https://doi.org/10.2514/6.2020-1894
  • Dounia, O., O. Vermorel, A. Misdariis, and T. Poinsot. 2019. Influence of kinetics on DDT simulations. Combust. Flame 200:1–14. doi:10.1016/j.combustflame.2018.11.009.
  • Dumitrache, C., R. VanOsdol, C. M. Limbac, and A. P. Yalin. 2017. Control of early flame Kernel growth by multi-wavelength laser pulses for enhanced ignition. Sci. Rep. 7:10239. doi:10.1038/s41598-017-10457-0.
  • Ettner, F., K. G. Vollmer, and T. Sattelmayer. 2014. Numerical simulation of the deflagration-to-detonation transition in inhomogeneous mixtures. J. Combust. 2014:1–15. doi:10.1155/2014/686347.
  • Gelfand, B. E., S. M. Frolov, and M. A. Nettleton. 1991. Gaseous detonations-a selective review. Prog. Energy Combust. Sci. 17:327–71.
  • Glassman, I., and R. A. Yetter. 2008. Combustion. Fourth ed., 794. London, UK: Elsevier Inc.
  • Greenshields, C. 2017. OpenFOAM user guide. v5 ed. Reading, UK: CFD Direct Ltd.
  • Han, W., Y. Gao, and C. K. Law. 2017. Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: An integrated mechanistic study. Combust. Flame 176:285–98. doi:10.1016/j.combustflame.2016.10.010.
  • Kagan, L., and G. Sivashinsky. 2007. The transition from deflagration to detonation in thin channels. Combust. Flame 134:389–97. doi:10.1016/S0010-2180(03)00138-X.
  • Konnov, A. 2008. Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combust. Flame 152 (4):507–28. doi:10.1016/j.combustflame.2007.10.024.
  • Kuznetsov, M. Liberman, and I. Matsukov. 2010. Experimental study of the preheat zone formation and deflagration to detonation transition. Combust. Sci. Technol. 182:11–12,1628-1644. doi:10.1080/00102202.2010.497327.
  • Lee, S. Y., J. Watts, S. Saretto, C. Pal, C. R. Woodward, and R. Santoro. 2004. Deflagration to detonation transition processes by turbulence-generating obstacles in pulse detonation engines. J. Propul. Power 20:1026–36. doi:10.2514/1.11042.
  • Lempert, R. W. 2015. An overview of the AFOSR plasma MURI program: Fundamental mechanisms, predictive modeling, and novel aerospace applications of plasma assisted combustion. 53rd AIAA Aerospace Sciences Meeting. Paper 2015-0154, Florida. https://doi.org/10.2514/6.2015-0154
  • Liberman, M. A., M. Kuznetsov, A. Ivanov, and I. Matsukov. 2009. Formation of the preheated zone ahead of a propagating flame and the mechanism underlying the deflagration-to-detonation transition. Phys Lett A 373:501–10. doi:10.1016/j.physleta.2008.12.008.
  • Liberman, M. A., M. F. Ivanov, A. D. Kiverin, M. S. Kuznetsov, A. A. Chukalovsky, and T. V. Rakhimova. 2010. Deflagration-to-detonation transition in highly reactive combustible mixtures. Acta Astronaut. 67:688. doi:10.1016/j.actaastro.2010.05.024.
  • Lipatnikov, A. N., V. A. Sabelnikov, and A. Y. Poludnenko. 2019. Assessment of a transport equation for mean reaction rate using DNS data obtained from highly unsteady premixed turbulent flames. Int J Heat Mass Transf 134:398–404. doi:10.1016/j.ijheatmasstransfer.2019.01.043.
  • Mahamud, R., A. A. Tropina, M. N. Shneider, and R. B. Miles. 2018. Dual-pulse laser ignition model. Phys. Fluids 30:106104. doi:10.1063/1.5043295.
  • Michael, J. B., A. Dogariu, M. N. Shneider, and R. B. Miles. 2010. Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures. J. Appl. Phys. 108:09330. doi:10.1063/1.3506401.
  • Ng, H. D., M. I. Radulescu, A. J. Higgins, N. Nikiforakis, and J. H. S. Lee. 2005. Numerical investigation of the instability for one dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combust. Theory Modell. 9:385–401. doi:10.1080/13647830500307758.
  • Ng., H. D., Y. Ju, and J. H. S. Lee. 2007. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int. J. Hydrogen Energy 32:93–99. doi:10.1016/j.ijhydene.2006.03.012.
  • Oran, E. S., and V. N. Gamezo. 2007. Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 148:4–47. doi:10.1016/j.combustflame.2006.07.010.
  • Poludnenko, A. Y., T. A. Gardiner, and E. S. Oran. 2011. Spontaneous transition of turbulent flames to detonations in unconfined media. Phys. Rev. Lett. 107:054501. doi:10.1103/PhysRevLett.107.054501.
  • Popov, N. A. 2007. The effect of nonequilibrium excitation on the ignition of hydrogen-oxygen mixtures. High Temp. 45:261–79. doi:10.1134/S0018151X07020174.
  • Popov, N. A. 2011. Effect of singlet oxygen O2(a 1Δg) molecules produced in a gas discharge plasma on the ignition of hydrogen-oxygen mixtures. Plasma Sources Sci. Tech. 20:045002. doi:10.1088/0963-0252/20/4/045002.
  • Schultz, E., and J. Shepherd. 2000. Validation of detailed reaction mechanisms for detonation simulation California Institute of Technology Graduate Aeronautical Laboratories Technical Report FM 99-5.
  • Shchelkin, K. I. 1940. Influence of tube roughness on the formation and detonation propagation in gas. J. Exp. Theor. Phys. 10:823–29.
  • Starikovskiy, A., and N. Aleksandrov. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 39:61–110. doi:10.1016/j.pecs.2012.05.003.
  • Starikovskiy, A., N. Aleksandrov, and A. Rakitin. 2012. Plasma-assisted ignition and deflagration-to-detonation transition. Phil. Trans. R. Soc. A 370:740–73. doi:10.1098/rsta.2011.0344.
  • Stockman, E. S., S. H. Zaidi, R. B. Miles, C. D. Carter, and M. D. Ryan. 2009. Measurements of combustion properties in a microwave enhanced flame. Combust. Flame 156:1453–61. doi:10.1016/j.combustflame.2009.02.006.
  • Thomas, G. 2012. Some observations on the initiation and onset of detonation. Philos. Trans. R. Soc. Ser. A 370:715–39. doi:10.1098/rsta.2011.0368.
  • Thomas, G. O., R. Bambrey, and C. Brown. 2001. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction. Combust. Theory Model 5:573–94. doi:10.1088/1364-7830/5/4/304.
  • Tropina, A. A., and M. N. Shneider. 2020. Modeling of laser ignition in hydrogen-air mixture, AIAA SciTech Forum, Orlando, FL, AIAA Paper 2020-1892, January 6-10.
  • Tropina, A. A., M. N. Shneider, and R. B. Miles. 2011. Ignition delay time and laminar flame velocity for a combined laser-microwave ignition. IEEE Trans. Plasma Sci. 39:3263–68. doi:10.1109/TPS.2011.2162857.
  • Tropina, A. A., M. N. Shneider, and R. B. Miles. 2016. Ignition by short duration, nonequilibrium plasma: Basic concepts and applications in internal combustion engines. Combust. Sci. Technol. 188:831, 852. doi:10.1080/00102202.2015.1125347.
  • Tropina, A. A., M. N. Shneider, and R. B. Miles. 2017. Mathematical model of dual-pulse laser ignition. J. Propul. Power 34:408–14. doi:10.2514/1.B36687.
  • Urtiew, P. A., and A. K. Oppenheim. 1966. Experimental observations of the transition to detonation in an explosive gas. Proc. R. Soc. London Ser. A 295:13–28.
  • Valiev, T., D. M. Bychkov, V. Akkerman, and L. E. Eriksson. 2009. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration. Phys. Rev. E 80:036317. doi:10.1103/PhysRevE.80.036317.
  • Weller, H. G., G. Tabor, A. D. Gosman, and C. Fureby. 1998. Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Symp. (Int.l) Combust. 27:899–907. doi:10.1016/S0082-0784(98)80487-6.
  • Westbrook, C. K., and F. L. Dryer. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27:31–43. doi:10.1080/00102208108946970.
  • Wu, L., J. Lane, N. Cernansky, D. Miller, A. Fridman, and A. Starikovskiy. 2011. Plasma assisted ignition below self-ignition threshold in methane, ethane, propane and butane-air mixtures. Proc. Combust. Inst. 33:3219–24. doi:10.1016/j.proci.2010.06.003.
  • Wu, M. H., M. P. Burke, S. F. Son, and R. A. Yetter. 2007. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc. Combust. Inst. 31:2429–2436. 11a. doi:10.1016/j.proci.2006.08.098.
  • Zel’dovich, Y. B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39:211–26. doi:10.1016/0010-2180(80)90017-6.
  • Zeldovich, Y. B., V. B. Librovich, G. M. Makhviladze, and G. I. Sivashinsky. 1970. On the development of detonation in a non-uniformly preheated gas. Astronautica Acta 15:313–21.
  • Zhou, S., F. Wang, X. Che, and W. Nie. 2016. Numerical study of nonequilibrium plasma assisted detonation initiation in detonation tube. Phys. Plasmas. 23:123522. doi:10.1063/1.4972136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.