182
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Gap Width on Premixed Flame Propagation in Non-adiabatic Closed Hele–Shaw Cells

ORCID Icon, , , , &
Pages 2793-2816 | Received 28 Apr 2020, Accepted 18 Feb 2021, Published online: 06 Apr 2021

References

  • Akkerman, V., V. Bychkov, A. Petchenko, and L. E. Eriksson. 2006. Accelerating flames in cylindrical tubes with nonslip at the walls. Combust. Flame 145:206–19. doi:10.1016/j.combustflame.2005.10.011.
  • Aly, S. L., and C. E. Hermance. 1981. A two-dimensional theory of laminar flame quenching. Combust. Flame 40:173–85. doi:10.1016/0010-2180(81)90121-8.
  • Brambilla, A., C. E. Frouzakis, J. Mantzaras, A. Tomboulides, S. Kerkemeier, and K. Boulouchos. 2014. Detailed transient numerical simulation of H2/air hetero-/homogeneous combustion in platinum-coated channels with conjugate heat transfer. Combust. Flame 161:2692–707. doi:10.1016/j.combustflame.2014.04.003.
  • Bychkov, V., V. Y. Akkerman, G. Fru, A. Petchenko, and L.-E. Eriksson. 2007. Flame acceleration in the early stages of burning in tubes. Combust. Flame 150:263–76. doi:10.1016/j.combustflame.2007.01.004.
  • Daou, J., and M. Matalon. 2002. Influence of conductive heat-losses on the propagation of premixed flames in channels. Combust. Flame 128:321–39. doi:10.1016/S0010-2180(01)00362-5.
  • Fernández-Galisteo, D., V. N. Kurdyumov, and P. D. Ronney. 2018. Analysis of premixed flame propagation between two closely-spaced parallel plates. Combust. Flame 190:133–45. doi:10.1016/j.combustflame.2017.11.022.
  • Gamezo, V. and Oran, E. 2006. Flame Acceleration in Narrow Tubes: Effect of Wall Temperature on Propulsion Characteristics. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA 2006–1134.
  • Gonzalez, M., R. Borghi, and A. Saouab. 1992. Interaction of a flame front with its self-generated flow in an enclosure: The“tulip flame” phenomenon. Combust. Flame 88:201–20. doi:10.1016/0010-2180(92)90052-Q.
  • Huo, J., H. Su, L. Jiang, D. Zhao, and X. Wang. 2019. Numerical study on the propagation of premixed flames in confined narrow disc-shape chambers. Combust. Sci. Technol. 191:1380–404. doi:10.1080/00102202.2018.1527829.
  • Jafargholi, M., G. K. Giannakopoulos, C. E. Frouzakis, and K. Boulouchos. 2018. Laminar syngas–air premixed flames in a closed rectangular domain: DNS of flame propagation and flame/wall interactions. Combust. Flame 188:453–68. doi:10.1016/j.combustflame.2017.09.029.
  • Jang, H. J., G. M. Jang, and N. I. Kim. 2019. Unsteady propagation of premixed methane/propane flames in a mesoscale disk burner of variable-gaps. Proc. Combust. Instit. 37:1861–68. doi:10.1016/j.proci.2018.06.112.
  • Jang, H. J., S. M. Lee, and N. I. Kim. 2020. Effects of ignition disturbance on flame propagation of methane and propane in a narrow-gap-disk-burner. Combust. Flame 215:124–33. doi:10.1016/j.combustflame.2020.01.019.
  • Jarosiński, J. 1983. Flame quenching by a cold wall. Combust. Flame 50:167–75. doi:10.1016/0010-2180(83)90059-7.
  • Jiang, L., H. Su, J. Huo, X. Li, H. Yang, and D. Zhao. 2019. Experimental study on propane/air flame propagation characteristics in a disc-like gap chamber. Combust. Sci. Technol. 191:1168–83. doi:10.1080/00102202.2018.1516647.
  • Joulin, G., and G. Sivashinsky. 1994. Influence of momentum and heat losses on the large-scale stability of Quasi-2d premixed flames. Combust. Sci. Technol. 98:11–23. doi:10.1080/00102209408935393.
  • Ju, Y., and B. Xu. 2006. Effects of channel width and Lewis number on the multiple flame regimes and propagation limits in mesoscale. Combust. Sci. Technol. 178:1723–53. doi:10.1080/00102200600788643.
  • Ju, Y., and K. Maruta. 2011. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci. 37:669–715. doi:10.1016/j.pecs.2011.03.001.
  • Kaisare, N. S., and D. G. Vlachos. 2012. A review on microcombustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci. 38:321–59. doi:10.1016/j.pecs.2012.01.001.
  • Kang, X., R. J. Gollan, P. A. Jacobs, and A. Veeraragavan. 2017. On the influence of modelling choices on combustion in narrow channels. Comput Fluids 144:117–36. doi:10.1016/j.compfluid.2016.11.017.
  • Karlin, V., G. Makhviladze, J. Roberts, and V. I. Melikhov. 2000. Effect of Lewis number on flame front fragmentation in narrow closed channels. Combust. Flame 120:173–87. doi:10.1016/S0010-2180(99)00083-8.
  • Kim, N., and K. Maruta. 2006. A numerical study on propagation of premixed flames in small tubes. Combust. Flame 146:283–301. doi:10.1016/j.combustflame.2006.03.004.
  • Kuo, K. K. 2005. Principles of combustion, 2nd Edition. New York:John Wiley and Sons.
  • Kurdyumov, V. N., C. Jiménez, V. V. Gubernov, and A. V. Kolobov. 2015. Global stability analysis of gasless flames propagating in a cylindrical sample of energetic material: Influence of radiative heat-losses. Combust. Flame 162:1996–2005. doi:10.1016/j.combustflame.2014.12.018.
  • Kurdyumov, V. N., G. Pizza, C. E. Frouzakis, and J. Mantzaras. 2009. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature. Combust. Flame 156:2190–200. doi:10.1016/j.combustflame.2009.08.001.
  • Law, C. K. 2006. Combustion Physics. New York: Cambridge university press.
  • Leach, T. T., and C. P. Cadou. 2005. The role of structural heat exchange and heat loss in the design of efficient silicon micro-combustors. Proc. Combust. Instit. 30:2437–44. doi:10.1016/j.proci.2004.08.229.
  • Lee, D. K., and K. Maruta. 2012. Heat recirculation effects on flame propagation and flame structure in a mesoscale tube. Combust. Theory Modelling 16:507–36. doi:10.1080/13647830.2011.638400.
  • Martínez-Ruiz, D., Veiga-López, F. and Sánchez-Sanz, M. 2019. Premixed-flame oscillations in narrow channels. Physical Review Fluids, 4(10): 100503.
  • Matalon, M., and P. Metzener. 1997. The propagation of premixed flames in closed tubes. J. Fluid Mech. 336:331–50. doi:10.1017/S0022112096004843.
  • McGreevy, J. L., and M. Matalon. 1992. Lewis number effect on the propagation of premixed flames in closed tubes. Combust. Flame 91:213–25. doi:10.1016/0010-2180(92)90054-S.
  • Nakamura, Y., H. Yamashita, and K. Saito. 2006. A numerical study on extinction behaviour of laminar micro-diffusion flames. Combust. Theory Modelling 10:927–38. doi:10.1080/13647830600941704.
  • Ponizy, B., A. Claverie, and B. Veyssière. 2014. Tulip flame - the mechanism of flame front inversion. Combust. Flame 161:3051–62. doi:10.1016/j.combustflame.2014.06.001.
  • Sharif, J., M. Abid, and P. D. Ronney. 1999. Premixed-gas flame propagation in Hele-Shaw cells. In Spring Technical Meeting, joint U.S. sections, Washington D.C:Combustion Institute
  • Sher, E., and I. Sher. 2011. Theoretical limits of scaling-down internal combustion engines. Chem Eng Sci 66:260–67. doi:10.1016/j.ces.2010.10.005.
  • Sher, I., D. Levinzon-Sher, and E. Sher. 2009. Miniaturization limitations of HCCI internal combustion engines. Appl. Therm. Eng. 29:400–11. doi:10.1016/j.applthermaleng.2008.03.020.
  • Shi, B., H. Yu, and J. Zhang. 2018. The effects of the various factors and the engine size on micro internal combustion swing engine (MICSE). Appl. Therm. Eng. 144:262–68. doi:10.1016/j.applthermaleng.2018.08.067.
  • Spalding, D. B. 1957. A theory of inflammability limits and flame-quenching. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 240, 83–100.
  • Veeraragavan, A., and C. P. Cadou. 2011. Flame speed predictions in planar micro/mesoscale combustors with conjugate heat transfer. Combust. Flame 158:2178–87. doi:10.1016/j.combustflame.2011.04.006.
  • Veiga-López, F., D. Martínez-Ruiz, E. Fernández-Tarrazo, and M. Sánchez-Sanz. 2019. Experimental analysis of oscillatory premixed flames in a Hele-Shaw cell propagating towards a closed end. Combust. Flame 201:1–11. doi:10.1016/j.combustflame.2018.12.005.
  • Wang, H., X. Q. You, A. V. Joshi, A. G. Davis, A. Laskin, F. Egolfopoulos, and C. K. Law 2007. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. Accessed May 2007. http://ignis.usc.edu/USC_Mech_II.htm.
  • Westbrook, C. K., and F. L. Dryer. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27:31–43. doi:10.1080/00102208108946970.
  • Wu, M. H., and C. Y. Wang. 2011. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures. Proc. Combust. Instit. 33:2287–93. doi:10.1016/j.proci.2010.07.081.
  • Wu, M. H., and W. C. Kuo. 2013. Accelerative expansion and DDT of stoichiometric ethylene/oxygen flame rings in micro-gaps. Proc. Combust. Instit. 34:2017–24. doi:10.1016/j.proci.2012.07.008.
  • Zhou, X., Z. Zhang, W. Kong, and N. Du. 2016. Investigations of leakage mechanisms and its influences on a micro swing engine considering rarefaction effects. Appl. Therm. Eng. 106:674–80. doi:10.1016/j.applthermaleng.2016.06.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.