194
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Third Body Effect of Carbon Dioxide on N-heptane Ignition Delay Characteristics under O2/CO2 Conditions

, , , , , & show all
Pages 2817-2835 | Received 07 Jul 2020, Accepted 17 Feb 2021, Published online: 16 Mar 2021

References

  • Aul, C. J., W. K. Metcalfe, S. M. Burke, H. J. Curran, and E. L. Petersen. 2013. Ignition and kinetic modeling of methane and ethane fuel blends with oxygen: A design of experiments approach. Combust. Flame 160:1153–67.
  • Aydoğan, B. 2020. An experimental examination of the effects of n-hexane and n-heptane fuel blends on combustion, performance and emissions characteristics in a HCCI engine. Energy 192:116600.
  • Baulch, D., C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr, T. Murrells, M. Pilling, and J. Troe. 1995. Erratum: Evaluated kinetic data for combustion modeling. supplement I [J. phys. chem. ref. data 23, 847 (1994)]. J. Phys. Chem. Ref. Data 24:1609–30.
  • Campbell, M. F., S. Wang, C. S. Goldenstein, R. M. Spearrin, A. M. Tulgestke, L. T. Zaczek, D. F. Davidson, and R. K. Hanson. 2015. Constrained reaction volume shock tube study of n-heptane oxidation: Ignition delay times and time-histories of multiple species and temperature. Proc. Combust. Inst 35:231–39.
  • Chan, Y., M. Zhu, Z. Z. Zhang, P. Liu, and D. Zhang. 2015. The effect of CO2 dilution on the laminar burning velocity of premixed methane/air flames. Energy Procedia 75:3048–53.
  • Chen, G., W. Yu, J. Fu, J. Mo, Z. Huang, J. Yang, Z. Wang, H. Jin, and F. Qi. 2012. Experimental and modeling study of the effects of adding oxygenated fuels to premixed n-heptane flames. Combust. Flame 159:2324–35.
  • Chen, H., H. Shen, T. Wu, and C. Zuo. 2017. Numerical simulation and experimental research on combustion characteristics of compression-ignition engine under an O2/CO2 atmosphere. HKIE Trans. 24:121–32.
  • Cho, J., and H. H. Song. 2020. Dimensionless parameters determining the effect of dilution on ignition delay of syngas and hydrocarbon fuels. Combust. Flame 213:279–90.
  • De Vries, J., J. M. Hall, S. L. Simmons, M. J. Rickard, D. M. Kalitan, and E. L. Petersen. 2007. Ethane ignition and oxidation behind reflected shock waves. Combust. Flame 150:137–50.
  • Dias, V., C. Duynslaegher, F. Contino, J. Vandooren, and H. Jeanmart. 2012. Experimental and modeling study of formaldehyde combustion in flames. Combust. Flame 159:1814–20.
  • Fedyaeva, O. N., D. O. Artamonov, and A. A. Vostrikov. 2019. Effect of H2O and CO2 on propane, propene, and isopropanol oxidation at elevated pressures. Combust. Flame 199:230–40.
  • Han, M., Y. Ai, Z. Chen, and W. Kong. 2015. Laminar flame speeds of H2/CO with CO2 dilution at normal and elevated pressures and temperatures. Fuel 148:32–38.
  • Imbert, B., F. Lafosse, L. Catoire, C.-É. Paillard, and B. Khasainov. 2008. Formulation reproducing the ignition delays simulated by a detailed mechanism: Application to n-heptane combustion. Combust. Flame 155:380–408.
  • Jiangtao, H., Y. Chunde, and G. Peilin. 2017. Effects of injection pressure on combustion characteristics of diesel fuel in air and premixed methane/air mixture atmosphere. Trans. CSICE 35:289–96.
  • Koroglu, B., O. M. Pryor, J. Lopez, L. Nash, and S. S. Vasu. 2016. Shock tube ignition delay times and methane time-histories measurements during excess CO2 diluted oxy-methane combustion. Combust. Flame 164:152–63.
  • Krishnan, S., and R. Ravikumar. 1980. Unition delay of methane in reflected shock waves. Combust. Sci. Technol 24:239–45.
  • Lee, M. C., S. B. Seo, J. Yoon, M. Kim, and Y. Yoon. 2012. Experimental study on the effect of N2, CO2, and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine. Fuel 102:431–38.
  • Liu, Y., Q. Xiang, Z. Li, S. Yao, X. Liang, and F. Wang. 2018a. Experiment and simulation investigation on the characteristics of diesel spray impingement based on droplet impact phenomenon. Appl. Sci 8:384.
  • Liu, Y., Q. Xiang, P. Wei, L. Zhang, S. Yao, X. He, and H. Sun. 2020. Effects of carbon dioxide addition on diesel spray flame characteristics in oxygen-carbon dioxide atmospheres. Fuel 276:118039.
  • Liu, Y., T. Zhao, Z. Li, F. Wang, S. Yao, X. Liang, and X. He. 2018b. Auto-ignition characteristics of diesel fuel in an O2–CO2 mixture. Trans. Can. Soc. Mech. Eng. 43:1–12.
  • Liu, -Y.-Y., J.-M. Most, P. Bauer, and A. Claverie. 2009. Reaction zone characterization of counter-flow diffusion flame with diluted and preheated reactants. Int. J. Miner., Metall. Mater 16:278–84.
  • Maroteaux, F., and C. Saad. 2013. Diesel engine combustion modeling for hardware in the loop applications: Effects of ignition delay time model. Energy 57:641–52.
  • Pan, L., E. Hu, Z. Tian, F. Yang, and Z. Huang. 2015. Experimental and kinetic study on ignition delay times of dimethyl ether at high temperatures. Energy Fuels 29:3495–506.
  • Pei, P., and Y. Lu. 2013. Energy-saving technologies of the unconventional thermal cycle internal combustion engines. J. Automot. Saf. Energy 4:1–15.
  • Peters, N., G. Paczko, R. Seiser, and K. Seshadri. 2002. Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane. Combust. Flame 128:38–59.
  • Sabia, P., M. L. Lavadera, P. Giudicianni, G. Sorrentino, R. Ragucci, and M. De Joannon. 2015. CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions. Combust. Flame 162:533–43.
  • Seiser, R., H. Pitsch, K. Seshadri, W. Pitz, and H. Curran 2000. Extinction and autoignition of n-heptane in counterflow configuration. Lawrence Livermore National lab ca.
  • Shao, J., D. F. Davidson, and R. K. Hanson. 2018. A shock tube study of ignition delay times in diluted methane, ethylene, propene and their blends at elevated pressures. Fuel 225:370–80.
  • Stagni, A., D. Brignoli, M. Cinquanta, A. Cuoci, A. Frassoldati, E. Ranzi, and T. Faravelli. 2018. The influence of low-temperature chemistry on partially-premixed counterflow n-heptane/air flames. Combust. Flame 188:440–52.
  • Su, W., and H. Huang. 2005. Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion. Fuel 84:1029–40.
  • Tu, Y., W. Yang, K. B. Siah, and S. Prabakaran. 2019. A comparative study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O. Energy Procedia 158:1473–78.
  • Wang, S., C. Ji, B. Zhang, X. Cong, and X. Liu. 2016. Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine. Energy 96:118–26.
  • Wang, Z., S. Wu, Y. Huang, S. Huang, S. Shi, X. Cheng, and R. Huang. 2018. Experimental investigation on spray, evaporation and combustion characteristics of ethanol-diesel, water-emulsified diesel and neat diesel fuels. Fuel 231:438–48.
  • Watanabe, H., F. Arai, and K. Okazaki. 2013. Role of CO2 in the CH4 oxidation and H2 formation during fuel-rich combustion in O2/CO2 environments. Combust. Flame 160:2375–85.
  • Watanabe, H., J.-I. Yamamoto, and K. Okazaki. 2011. NOx formation and reduction mechanisms in staged O2/CO2 combustion. Combust. Flame 158:1255–63.
  • Yang, Z., X. Yu, J. Peng, L. Wang, Z. Dong, X. Li, S. Sun, S. Meng, and H. Xu. 2017. Effects of N2, CO2 and H2O dilutions on temperature and concentration fields of OH in methane bunsen flames by using PLIF thermometry and bi-directional PLIF. Exp. Therm Fluid Sci. 81:209–22.
  • Zang, R., C. Yao, Z. Yin, P. Geng, J. Hu, and T. Wu. 2016. Mechanistic study of ignition characteristics of diesel/methanol and diesel/methane dual fuel engine. Energy Fuels 30:8630–37.
  • Zhang, D., Y. Wang, C. Zhang, P. Li, and X. Li. 2019. Experimental and numerical investigation of vitiation effects on the auto-ignition of n-heptane at high temperatures. Energy 174:922–31.
  • Zhang, K., C. Banyon, J. Bugler, H. J. Curran, A. Rodriguez, O. Herbinet, F. Battin-Leclerc, C. B’Chir, and K. A. Heufer. 2016. An updated experimental and kinetic modeling study of n-heptane oxidation. Combust. Flame 172:116–35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.